
How Java Programmers Test Exceptional Behavior

Diego Marcilio

USI Università della Svizzera italiana

Lugano, Switzerland

dvmarcilio.github.io

Carlo A. Furia

USI Università della Svizzera italiana

Lugano, Switzerland

bugcounting.net

Abstract—Exceptions often signal faulty or undesired behav-
ior; hence, high-quality test suites should also target exceptional
behavior. This paper is a large-scale study of exceptional tests—
which exercise exceptional behavior—in 1 157 open-source Java
projects hosted on GitHub. We analyzed JUnit exceptional tests to
understand what kinds of exceptions are more frequently tested,
what coding patterns are used, and how features of a project,
such as its size and number of contributors, correlate to the
characteristics of its exceptional tests. We found that exceptional
tests are only 13% of all tests, but tend to be larger than
other tests on average; unchecked exceptions are tested twice
as frequently as checked ones; 42% of all exceptional tests use
try/catch blocks and usually are larger than those using other
idioms; and bigger projects with more contributors tend to have
more exceptional tests written using different styles. The paper
also zeroes in on several detailed examples involving some of the
largest analyzed projects, which refine the empirical results with
qualitative evidence. The study’s findings, and the capabilities of
the tool we developed to analyze exceptional tests, suggest several
implications for the practice of software development and for
follow-up empirical studies.

I. INTRODUCTION

The importance of testing in software development has become

conventional wisdom; yet, writing high-quality tests remains

a challenging endeavor [1], [2]. Among all different kinds of

tests that are written, in this paper we focus on those that

exercise exceptional behavior—or exceptional tests for short.

Exceptional behavior is a frequent source of failures [3], and is

often implicated in anti-patterns and misuses [4]; on the other

hand, proper exception-handling code is a necessary com-

ponent of robust, maintainable software [5], [6]. Therefore,

testing exceptional behavior is critical in building comprehen-

sive test suites. However, dealing with exceptions—including

in testsa—can be tricky, because an exceptional behavior’s

control flow is intrinsically unstructured (an exception can

propagate through the call stack) and it is easy to miss some

“corner cases” of exception-inducing inputs [7]. As we point

out in Sec. III, testing practices have been studied extensively,

and exceptional behavior is an increasingly popular empirical

research target, but the combination of the two topics—

exceptional testing—has so far received little attention.

In this paper, we contribute to narrowing this knowledge

gap with a large-scale empirical study of exceptional test-

ing in Java. As we describe in Sec. VII, we analyzed all

aA StackOverflow question1 asking how to write exceptional tests in JUnit
has over 1.3 million views and several answers from experts such as one of
Mockito’s core contributors and StackOverflow users with high reputation.

exceptional tests we could detect written using any version

of the JUnit framework in 1 157 open-source Java projects—

including numerous widely-used frameworks maintained by

Apache, Google, and Spring—comprising 1 123 846 tests. The

main findings of this analysis, detailed in Sec. V, include:

• Exceptional tests are often included as part of the test-

writing effort: 66% of projects with tests also include

some exceptional tests, and 13% of all tests are excep-

tional. On average, an exceptional test is 110% the size

(mean lines of code) of any test.

• Exceptional tests most frequently target Java’s standard

exception classes (over 2/3 of all exceptional tests),

and unchecked exceptions (about twice as frequently as

checked exceptions).

• A standard try/catch block is the most common way

of writing an exceptional test, followed by JUnit’s

@Test(expected=...) annotation.

• Exceptional tests written using try/catch blocks tend to

be the longest; those written using @Test(expected=...)

tend to be the shortest.

• Larger projects with more contributors are more likely to

include exceptional tests written in a variety of styles.

In addition to several more quantitative findings, Sec. V

includes selected qualitative evidence about some of the

largest projects we analyzed, which complements and hones

the numerical data with concrete, illustrative examples.

In summary, this paper makes the following contributions:

• JUnitScrambler: a tool that automatically discovers and

analyzes (exceptional) tests written in any version of

JUnit (described in Sec. IV-C).

• The dataset obtained by running JUnitScrambler on over

a thousand open-source Java projects, including informa-

tion about over a million tests.b

• The empirical analysis of the dataset, described in

Sec. IV–V.

The study’s findings, and the techniques used for the anal-

ysis, suggest several implications for the practice of software

development and for follow-up empirical studies. Sec. VII

outlines some of them on concrete examples from our analysis.

bA replication package—including tool, dataset, and all scripts—is available
at https://doi.org/10.6084/m9.figshare.13547561.

dvmarcilio.github.io
bugcounting.net
https://doi.org/10.6084/m9.figshare.13547561

II. BACKGROUND

A. Exceptions: What They Are For

Exceptions are used to signal that something went wrong

during program execution. A program may include exception

handling code, which executes when an exception is raised to

try to recover from the error or at least mitigate it. Thus, at a

high-level, exceptions can help improve program robustness.

In an object-oriented language like Java, exceptions are in-

stances of some exception classes; different exception classes

characterize different ways of using exceptions. In our analy-

sis, we consider three orthogonal (and standard [6], [8], [9])

classifications according to origin, kind, and behavioral usage.

Origin: an exception class’s origin in a given project

depends on where it is defined: in Java’s standard libraries,

local to the project’s code base, or in an external library.

Kind: according to its type,2 an exception may be unchecked

(a subtype of RuntimeException or Error) or checked (any

other subtype of Throwable).3

Usage: exceptions are used to signal three main dif-

ferent categories of program behavior [8, §4.4] [9, §12]

[6, §8.4], which we refer to as usage failure, fault, and re-

turn. A failure is a low-level error that usually depends on

an exceptional state of the execution environment; for in-

stance, the program runs out of memory (OutOfMemoryError).

A fault signals the violation of a program’s expected be-

havior; for instance, an array is accessed with an invalid

index (ArrayIndexOutOfBoundsException). Category return

captures improper usages of exceptions—not to signal erro-

neous conditions but to propagate information outside of the

language’s structured control flow. For example, to “break out

of a complex, nested control flow”4 similarly to a goto; or to

signal the end of a file (java.io.EOFException).

B. Exceptional Testing Patterns

An exceptional test is a test that may trigger exceptional

behavior in the code it exercises. Based on the documentation

of JUnit5 and other testing libraries,6 as well as on other

empirical studies [10]–[13], we identified five main coding

patterns that programmers use to write exceptional tests—

which we show in Fig. 1 and discuss in the rest of this section.

1) Pattern try/catch: Pattern try/catch uses Java’s built-in

try/catch statements, and hence it does not require any

library. Testing whether some testing code throws an ex-

ception amounts to setting up a catch block for an exception

of the expected type. Pattern try/catch’s main strength is its

flexibility: it can check any features of any number of thrown

exceptions, at any point during the execution of the test, and

it can even check that a certain exception is not thrown (by

failing inside a catch block). On the flip side, the required

boilerplate code may result in tests that are verbose.

2) Pattern test: Version 4 of JUnit (released in 2006)c was

the first providing a custom feature to write exceptional tests:

by adding a parameter expected to the @Test annotation that

marks JUnit tests, programmers can specify which tests are

cWe report release dates of stable releases.

expected to throw which exceptions. Pattern test can make

exceptional tests very concise and readable. However, it has

limited flexibility: it is impossible to express which part of

the testing code is expected to throw an exception, to test

for multiple exception types, or to specify any attributes of

the thrown exceptions other than their type.

3) Pattern rule: Version 4.7 of JUnit (released in 2009)

introduced a new way of writing exceptional tests, using a field

of type ExpectedException marked with annotation @Rule.

Any test can set up such field to declare that the testing code

is expected to throw an exception of a certain type. Pattern

rule is somewhat more flexible than pattern test, since we

can specify attributes of the expected exception other than

its type (for example, its message). It can also designate that

a specific statement of the testing code should throw an

exception: this is the statement immediately following the calls

to methods of class ExpectedException. However, patterns

test and rule share the limitations that all code in testing code

following the statement that throws the first exception will be

ignored, and that they cannot specify multiple exception types

in the same testing method. Tests written according to pattern

rule remain concise but are stylistically quite different from

JUnit’s run-of-the-mill idioms that usually assert the expected

outcome after the testing code rather than before it. This may

be the reason why this pattern was removed from JUnit as

soon as assertThrows became available.

4) Pattern assert throws: Static assertion method

assertThrows was first introduced in JUnit 5.0 (released

in 2017) and then added to JUnit 4.13 in 2020. Since

assertThrows inputs the testing code as a lambda, this

pattern is expressible only since Java 8. Pattern assert finally

combines conciseness and flexibility, since assertThrows

also returns the thrown exception object, which can be

further inspected in the test code. It also blends with the

other assertion methods available in JUnit, and with the test

idioms they support. Pattern assert can be considered the

recommended style to write exceptional tests since JUnit 5.0

(which no longer supportsd patterns test and rule).

5) Pattern generic assertion: Assertion libraries—such as

Hamcrest, AssertJ, and Truth—provide flexible APIs to ex-

press all sorts of expected behavior—including exceptional

behavior. Only AssertJ (used in Fig. 1e) among these libraries

includes methods such as assertThatThrownBy that implicitly

catch any exceptions thrown by testing code; the other

libraries offer methods to specify properties of exceptional

objects but still rely on Java’s catch blocks or JUnit’s

assertThrows method to perform the actual catching. As its

name suggests, pattern generic is the most flexible approach

to writing exceptional tests. It is easy to combine assertion

methods in chains of method calls using the so-called “fluent”

style, making it easier and more readable to write complex

tests [13]. This structure also helps readability, supports

powerful auto-completion suggestions when used within an

IDE, and automatically generates informative error messages

dBackward compatibility is still possible through JUnit’s module Vintage.

2

@Test

void tryCatch()

throws Exception {

Exception caught = null;

try { /* testing code */ }

catch (Exception e)

{ caught = e; }

if (caught == null)

fail(); // fail

else pass(); // pass

}

(a) Pattern try/catch.

@Test(expected =

Exception.class)

void test()

throws Exception {

/* testing code */

}

(b) Pattern expect test.

@Rule

ExpectedException ex;

@Test

void rule()

throws Exception {

ex =

ExpectedException.none();

ex.expect(Exception.class);

ex.expectMessage("error");

/* testing code */

}

(c) Pattern expect rule.

@Test void assert()

throws Exception {

Exception ex =

Assertions.assertThrows(

Exception.class,

()->/* testing code */

);

assertEquals("error",

ex.getMessage());

}

(d) Pattern assert throws.

@Test void generic()

throws Exception {

assertThatThrownBy(

()->/* testing code */

).isInstanceOf(

Exception.class)

.hasMessage("error");

}

(e) Pattern generic assertion.

Fig. 1: The main coding patterns that programmers can use to test for exceptional behavior in Java.

whenever an assertion fails. Besides the dependency on an

additional library, the main disadvantages of using assertion

libraries may come from their great flexibility: when the same

behavior constraint can be expressed in several different ways,

it is harder to enforce a consistent style within a project, and

more refactoring and debugging effort may be needed.

III. RELATED WORK

Testing: Testing is a key technique to develop high-quality

software [1], [2]. Accordingly, there has been a massive

amount of software engineering research and practice dealing

with all sorts of aspects related to software testing, which

we can only briefly summarize here.e Among the empirical

contributions, researchers have studied the testing practices of

developers [14], the characteristics of the tests they write [15],

and how they relate to the bugs that are commonly found [12].

Among the technological contributions, a lot of effort has been

devoted to bringing more automation to testing. Framework

such as the popular JUnit7 and TestNG8 automate test-case

execution by providing syntactic means of defining test in-

puts and the expected outputs. Other tools can automate the

generation of test inputs [16], [17] as well as of oracles—for

example in the form of assertions [18]–[20].

Exceptions and exception handling: First introduced in

PL/I [8], [21], exceptions are nowadays available in pretty

much any mainstream programming language. Since excep-

tional behavior is often implicated with bugs, studying how

exceptions are used in programs can improve our under-

standing of bugs and other deficiencies, and suggest ways

of improving software. We now summarize the most relevant

related work on exception handling published in the last few

years. For more references and details, see the proceedings of

the Workshop on Exception Handling [22] and the survey [7].

A lot of empirical research has investigated how excep-

tion handling is done in practice both by mining code

bases [23]–[29] and by looking at programmers’ habits and

guidelines [30], [31]. This line of research has revealed that

exception-handling code is often complex [32] and among

the most poorly understood and scarcely documented parts

of a system [33]. Then, it is not surprising that exceptions

are commonly implicated with bugs in a variety of software

eFor brevity we focus on work about the Java programming language,
although research also targets testing in other programming languages.

including Java libraries [34]–[37], Android apps [38], [39],

and cloud systems [40]. On the positive side, empirical studies

of exception-related bugs can inform the development of

techniques to proactively help developers finding a relevant

StackOverflow post [41], or to write exception-handling code

that likely follows the best practices [42].

APIs typically throw exceptions to signal incorrect calls

(for instance, invalid parameters). Therefore, API misuses can

often be linked to exceptions [35] or to missing exception-

handling code [36]. Conversely, it is possible to infer precon-

ditions by automatically mining API calls for common excep-

tions that signal common errors such as null-pointer derefer-

encing and index out-of-bounds [34], or by manually combin-

ing the messages of exception objects with other sources of

API documentation [37]. The Android mobile-programming

framework defines and uses numerous framework-specific

exception classes. Due to the nature of mobile apps (which

are event-driven and use several external resources), writing

proper exception handling code in Android is not easy [38],

[39], which is why test amplification is a promising tech-

nique [43] to validate such exception handling code.

Exceptional testing: Even though plenty of research studied

testing or exceptions, only little looked at the intersection of

the two topics beyond test-case generation [3], [44], [45]; as

Ebert et al. [46] put it: “perhaps surprisingly, there is com-

paratively little work studying how exception handling code

is tested or debugged in practice, with few exceptions [43],

[47]”. We mentioned [43] above; [47] introduces a coverage

analysis for exceptional-handling code. The lone work among

the few related to exceptional testing that is most closely

related to ours is by Dalton et al. [10], which also analyzes

tests and exceptional tests in 417 Java projects. Part of their

analysis is based on a survey of 66 developers about their

perception of exceptional-behavior testing, which is a method-

ology complementary to ours. Their analysis’s quantitative part

includes some measures similar to ours, which can be used

to corroborate our findings—most notably, they found that

61% of projects with tests also include some exceptional tests,

which is very close to our 66% (see Tab. II). Finally, notice that

[10]’s study targets a smaller collection of Java projects, and

does not analyze all categories of exceptions or the exceptional

testing patterns—which are instead a key component of our

results (see Sec. IV).

3

IV. STUDY DESIGN

A. Research Questions

Our overall goal is understanding how Java developers test

for exceptional behavior. To this end, we consider three main

research questions:

RQ1: How often is exceptional behavior tested?

The first research question investigates how usual exceptional

testing is in Java projects—both in absolute terms and relative

to testing in general.

RQ2: What kind of exceptional behavior is tested?

The second research question looks for trends in the kinds of

exception classes that feature in exceptional tests, and how

these affect other characteristics of the tests such as their size.

RQ3: What coding patterns are used for exceptional testing?

The third research question analyzes how exceptional tests are

written, and how they use the features of the available testing

frameworks.

B. Project Selection

We started from [48]’s list of 2 672 Java projects—those with

the most stars hosted on GitHub between November and

December 2019. GitHub stars indicate a project’s popularity

and are commonly used to select source code of consistent

quality [39], [41], [42], [48], [49]. Given our focus on tests,

we further discarded projects that 1) have no detectable JUnit

testsf (1 128 projects), or 2) have only the two tests that

Android Studio IDE generates automatically by default9 (374

projects). This leaves 1 157 Java projects with some non-

trivial tests, which are the focus of our analysis.g The final

project selection includes large frameworks and applications,

as well as projects in different domains. The filtering criteria

indicate these are projects of good quality whose developers

have devoted at least some effort to writing JUnit tests (a

median of 91 commits of test code per project).

C. Analysis Process

We built JUnitScrambler: a tool to extract data about excep-

tional tests in Java projects. The tool works in three steps:

build the project from its sources

discover the test code in the project

analyze the discovered tests for exceptional testing patterns

Step build looks for recipes for Java’s most popular build

systems—Maven, Gradle, and Ant—and uses them to compile

the project and its tests. It also tries to detect the required Java

version and all external dependencies. Automatically looking

for this information in build recipes may fail, or a project may

not use a build script that we recognize.

If a project is built successfully, step discover uses JUnit 5’s

test discovery API11—which can process JUnit tests in any

versions—to find tests. JUnit’s test discovery may work even

fThe restriction to JUnit is justified by its popularity: we found a mere 6

projects out of 2 672 with tests written exclusively for the TestNG framework.
gWe also ascertained that the patterns identified in Sec. II-B cover most of

the exceptional tests: for example, we found only 5 projects with exceptional
tests using library catch-exception10, which is not covered by the patterns.

when the build was incomplete; in addition, our tool looks

for references to executed testing classes among the output

of the build process. As a last resort, our tool scans every

Java source file in the project, and marks as “possible tests”

those that import testing libraries [50]. The combination of

these three ways of looking for tests allows step “discover” to

detect tests from all JUnit versions, including tests that may

not be trivially found (e.g., located in directories other than a

build system’s default or generated by the build process).

Step analyze parses all discovered tests with JavaParser,12

and processes the resulting abstract syntax tree and typing

information to measure the characteristics of exceptional tests

that we mention in Sec. IV-C. JavaParser’s rich information—

augmented with the dependencies collected by the build step—

supports a fine-grained analysis of testing patterns and ex-

ception types. Among other things, we distinguish between

usages of assertThat from various testing libraries (JUnit,

Hamcrest, AssertJ, and Truth), can follow nested calls in test

methods, and can often determine whether exception classes

from external libraries are checked or unchecked.

Measured data: For every project, JUnitScrambler reports

its build system, JUnit version, whether any tests were found,

and the list of classes with testing code. For every test (that

is, testing method), it measures its size in non-blank lines of

code (LOC), and if it detected any exceptional testing coding

patterns (Sec. II-B). For every exceptional test (that is, when

a pattern was found), it reports the detailed structure of the

pattern, whether the test asserts on an exception message or

cause, and the fully-qualified exceptional static types of the

exceptions mentioned in the test (which determine their origin

and kind, see Sec. II-A), and other contextual information such

as any messages in the assertions or code comments.

JUnitScrambler records the raw measured data in CSV

format. We then imported the data into R13 and used it to

perform the statistical analysis reported in Sec. V.

Qualitative analysis: A “Closer Look” section comple-

ments the quantitative analysis with qualitative findings about

each research question, which we obtained by systematically

inspecting the top-10 projects with the “most conspicuous”

characteristics relevant to the question. For example, RQ1’s

closer look inspects projects with “the largest number of

exceptional tests” and with “few exceptional tests”.

V. RESULTS

Before we delve into the details of exceptional testing, let’s

overview some overall characteristics of the projects we con-

sidered. Tab. I summarizes the main data.

BUILD SYSTEM

ALL MAVEN GRADLE ANT NA

1 157 521 464 39 172

% 100.0 45.0 40.1 3.4 14.9

TABLE I: The number # and percentage % of ALL analyzed

projects that use each BUILD SYSTEM. Percentages do not add

up to 100% because a few projects use multiple build systems.

4

Overall, we analyzed 1 157 projects with tests. Most projects

use one of three build systems: Maven is the most widely used

(45.0% of projects), followed by Gradle (40.1% of projects),

whereas only 3.4% of projects use Ant, and 14.9% of projects

use no build system that we could detect (NA in Tab. I).

1e+01

1e+03

1e+05

projects

#
 c

o
m

m
it
s

●

1

10

100

1000

projects

#
 c

o
n

tr
ib

u
to

rs

●

●

●●

●

●

●
●

●

●
●
●

●
●

●

●

●●

●●●

●

●
●●●
●

●

●
●●●

2005

2010

2015

2020

projects

fi
rs

t
c
o

m
m

it
 d

a
te

Fig. 2: Violin plots of the analyzed projects’ total number of

commits, number of contributors, and initial commit date of

their test code. Vertical scale is logarithmic in first two plots.

Fig. 2 displays other overall characteristics of the test code

among the 1 157 projects that we analyzed. The total number

of commits varies widely among projects: its median is 91, its

mean is 1 094, and its maximum 55 090 commits. The number

of contributors also varies widely: its median is 5, its mean is

22, and its maximum is 663 contributors. The age of the test

code, measured as the date of test code’s first commit, is less

spread out: its median is 2015-12-12, close to its mean 2015-

07-08; nonetheless there are several outlier older projects: the

oldest commit date is more than 17 years ago (2003-09-26).

A. RQ1: How often is exceptional behavior tested?

RQ1 asks how much exceptional testing is usually carried

out in Java projects. As shown in Tab. II, 66.2% of the

projects with some tests also include exceptional tests. The

split between exceptional and regular tests is, however, not

even: only 13.2% of all tests are exceptional—making up

14.6% of all lines of testing code. On the other hand, there

is a strong positive correlation (Kendall’s τ = 0.7) between

number of tests and number of exceptional tests that each

project includes, which indicates that exceptional tests are an

integral part of the test-writing effort in the analyzed projects.

#PROJECTS #METHODS #CLASSES
∑

LOC LOC

ALL TESTS 1 157 1 123 846 171 011 14 023 852 13

EXCEPTIONAL TESTS 766 148 063 41 537 2 046 930 14

% EXCEPTIONAL/ALL 66.2 13.2 24.3 14.6 110.3

TABLE II: Number of PROJECTS with some tests, number of

testing METHODS and CLASSES, total
∑

LOC and per-method

mean LOC size of test methods in lines of code. The first row

comprises ALL TESTS, the second only EXCEPTIONAL TESTS,

and the third the latter as a percentage of the former.

The violin plots in Fig. 3a provide more information about

the effort that is usually devoted to writing exceptional tests.

By comparing the two shapes in the leftmost plot, we notice

that the distribution of number of exceptional tests is wider

around the median. Thus, there is less inter-project variability

in the number of exceptional tests compared to all tests. A

similar trend exists for the total size (in lines of code) of all

tests compared to exceptional tests—even though the mean

size of any exceptional test is 110.3% that of any test. Indeed,

there is a small but definite positive correlation (Kendall’s

τ = 0.1) between a project’s number of tests and their median

size, but a negligible correlation (τ = −0.02) between a

project’s number of exceptional tests and their median size.

Thus, exceptional tests tend to be more homogeneous in size

across projects, indicating that writing exceptional tests is an

activity that receives significant effort but is somewhat more

“standardized” than writing tests in general.

Two thirds of the projects with tests also include

exceptional tests; the latter vary less in number and size.

RQ1: A Closer Look at Some Projects

We observed that projects with the largest number of tests

typically also have the largest number of exceptional tests.

In particular, the project with the most tests (Eclipse Collec-

tions14 with over 47 283 tests) is also the project with the

most exceptional tests (7 839 tests). To produce such a huge

number of tests the project uses code generation15 which can

automatically produce variants of tests for classes that have a

similar behavior (e.g., they implement the same interface).

Effective large-scale testing (including exceptional test-

ing) requires clear guidelines and effective practices. Project

Apache Geode, for example, comprises tests in 5 different

categories16 (including unit, integration, and acceptance) and

explicitly recommends how to catch exceptions in unit tests;17

this might explain why it ranks 4th and 5th among our projects

with the largest number of tests and exceptional tests. More

generally, projects with the largest number of (exceptional)

tests usually recommend providing unit tests when opening an

issue or contributing code, and actively try to include tests with

high code coverage (for example, project Hazelcast’s18 tests

cover over 85% of all project code according to SonarCloud;19

the project ranks 3rd and 8th among our projects with the

largest number of tests and exceptional tests).

At the opposite end of the spectrum, projects with few

(exceptional) tests tend to be younger, less established, and

provide simpler, more limited functionality. Project Rest Coun-

tries,20 for instance, offers a REST API exporting data about

worldwide countries (e.g., their currency) to add internation-

alization support to web applications. Tutorials and extensive

examples are another group of projects with a limited number

of tests and exceptional tests. It is reasonable to expect that

those projects that will undergo further development will also

considerably extend their test suites as they mature; citing

project Processing’s documentation: “someday” they will have

“hundreds of unit tests [. . .] but not today”.21

B. RQ2: What kind of exceptional behavior is tested?

RQ2 asks what kind of exceptional behavior is most frequently

tested in Java projects. The characteristics of the exception

classes in exceptional tests are a proxy for such behavior.

Categorization of exceptions: We classified the exception

classes that we found in our projects according to their origin,

kind, and usage (see Sec. II). The classifications into origin

and kind are objective and thus automatic. In contrast, an

exception class’s intended usage is described in the class’s

5

1e+01

1e+03

1e+05

all exceptional

tests

#
 t
e
s
ts

●●●●●1e+00

1e+02

1e+04

1e+06

all exceptional

tests

to
ta

l
L
O

C

●●

●

●

●

●
●

●

●

●●●
●●

●
●
●

●

●

●

●

●●

●
●

●●●●

●●

●●
●

●●●●●●●

●

●●

●
●

●●●●

●

●●

●

●

●

●

●

●●

3

10

30

100

all exceptional

tests

m
e
d
ia

n
 L

O
C

(a) Analyzed projects’ total number of tests, total size of all tests,
and median size of a test in lines of code. Each plot shows data
about all tests next to data about exceptional tests.

●●●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●
●●
●
●●●
●●
●●●●●●●●●●

●●

●●●●●●●
●
●
●
●●●
●●●
●●
●●
●
●●
●
●
●●
●
●●

●

●
●
●●
●●
●●

●●
●
●

●

●
●●
●●●●
●
●

●
●
●
●●

●

●
●

●
●
●●
●●
●
●●
●●●●

●

●
●●●

●

●
●●

●
●●
●●●●

●

●
●

●

●●●
●

●
●
●

●●●
●
●●●
●
●

●
●
●
●

●

●●●●
●
●
●●●
●

●

●●●●●
●

●●

●

●

●

●
●●●

●

●

●

●●●●●
●●●●●
●●
●●
●●●
●
●

●●

●

●
●●●
●●
●●●●
●●●
●

●●

●

●

●

●●●●●●●●●
●
●
●●
●

●

●●●●

●●

●●●
●
●●
●●●
●

●●●●●
●

●
●
●●
●
●●●●●
●●
●
●
●●
●

●

●
●●
●
●●●
●
●●

●
●●●

●

●●
●●
●●
●●●●

●●●
●
●
●●
●●
●●●
●

●

●

●
●
●

●

●

●
●●

●
●
●

●●●

●
●

●

●

●●●
●
●●●

●●
●
●

●●●

●●

●●

●
●
●●
●

●

●

●

●
●●●●●●●●●●●●●

●●

●●●●●●●●●●
●
●●
●
●
●
●●●

●

●

●

●●●●●

●

●
●●●●●●●●●

●

●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●
●
●●●●●●●●●●

●

●
●●

●●●●

●
●●●●●●●●

●●

●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●●

●●●●●●●●●●●●●●●●●

●

●●
●
●

●●●

●●●

●
●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●
●●

●●●

●●●
●●●
●●●●●●●●●●●●●●
●●●●●●

●

●

●

●
●●●●
●

●
●●●
●●●●●●●
●
●●
●
●●
●●●
●●●●●●

●
●
●●●●●
●●
●
●●
●●●

●

●

●●●●●●

●●●

●●

●

●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●

●

●
●●
●●

●

●

●●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●●

●
●
●
●●

●

●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●
●

●

●
●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●●

●
●
●

●●●

●

●

●

●

●
●

●

●

●●●

●

●●●

●●●
●

●

●

●●

●
●●

●

●

●

●
●
●

●●

●●
●

●

●

●

●●
●
●●

●●●

●

●

●

●

●●●●

●

●

●●●

●●
●●
●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●
●

●

●
●●●

●

●
●
●
●

●

●
●

●●

●
●●

●●

●

●●

●
●

●

●●

●

●

●●

●●

●

●●
●●●●●
●●

●●

●●●●●

●●●

●●●●

●

●●●

●●

●●●●

●●●

●

●

●
●
●●●
●
●

●●

●●●●●●●●

●

●

●

●

●

●●●●

●●●

●●

●

●●●●●

●●●●●●

●

●
●

●●

●●●

●●●

●

●●●●

●●

●

●

●●●

●

●●●●●

●

●●●●●

●●●

●●●

●

●●●

●●

●●●●●●

●●

●●●

●

●●●

●

●●●●●●●●●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●

●●●●

●●●●●●●●●●●●

●

●
●

●●●●

●
●
●●
●

●

●
●
●●●●

●

●

●
●

●

●

●
●
●
●

●

●

●●●

●
●
●
●●

●●

●●●●●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●
●
●
●

●

●

●

●●

●

●●●

●

●

●●

●●●

●●

●

●●●●

●
●●●

●

●

●

●

●
●●●
●●●
●

●

●

●●

●●
●●
●●
●
●●●●●●●●●●
●
●●●
●●
●

●
●
●

●

●

●●
●●

●●
●●
●●
●●
●
●●●●●●●●●●●
●●
●●

●

●

●

●
●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●

●●

●

●

●●

●●●●●

●
●
●
●
●
●
●●●

●

●●

●
●
●●
●

●

●●●

●●

●

●

●●●

●

●●

●
●

●

●
●
●●

●●
●●

●
●●●

●
●●●●●●●

●●
●

●
●

●●●●●●●●●

●
●
●

●●●

●●
●

●●●●●●●

●
●

●

●

●
●●●
●
●●●

●

●
●

●
●

●
●
●
●●
●

●●

●
●
●
●
●●
●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●
●
●
●●●●●●●●●●●●●

●●
●●

●

●●●

●●
●●●

●●
●●

●

●●

●

●
●●●

●
●
●

●
●
●●
●
●●

●●●
●
●●
●

●
●
●
●
●

●

●●●

●●
●
●

●
●
●
●

●

●●
●●

●

●

●
●
●

●

●

●

●

●
●●

●
●

●

●
●
●
●●
●●
●●●
●

●
●

●●
●
●
●●
●
●

●

●
●●

●

●●●
●●
●

●

●

●●

●●
●
●

●
●

●
●

●●●

●
●

●
●
●

●●●●
●
●
●
●●●

●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●●
●●

●

●●

●
●
●
●●●

●
●●
●

●●
●●●

●

●

●

●

●●
●●
●●

●

●●
●
●●●

●
●●●●●
●
●
●

●

●
●

●

●●●●
●●

●●●
●

●

●

●

●
●●

●

●
●
●
●●
●●●

●

●●●

●

●●

●●

●●

●

●●

●

●

●

●
●●
●●

●
●
●●●

●

●

●

●

●

●

●

●
●●
●●●●
●
●●
●●

●●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●●●●

●
●

●

●●●●●
●
●
●●
●
●●●●

●●

●

●
●
●●●

●●
●●●
●●
●●●
●
●●●
●
●●●

●●●

●●
●

●
●●

●●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●
●

●
●
●●
●●
●

●●
●
●
●

●●●

●

●●

●

●
●
●●
●
●

●

●
●●

●

●●

●●●●
●

●

●
●

●●

●
●

●●●

●

●

●
●●
●

●
●
●

●

●●

●
●

●●●

●

●

●●

●

●
●●
●●

●
●

●

●

●●

●●

●

●●

●●●●

●

●●
●
●
●●●

●●
●●

●

●●

●●
●●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●●

●●

●

●●

●●
●●
●

●

●
●●
●

●
●
●●

●●
●●

●
●
●●

●
●

●

●●

●

●●

●
●●
●

●

●

●
●
●●

●
●
●

●

●

●

●

●
●

●
●
●
●●●
●●
●

●
●●

●
●●
●

●

●

●
●●●
●
●●

●
●

●

●

●
●
●

●●

●
●

●
●

●

●

●

●●●
●

●
●

●

●●●

●

●

●●

●●
●

●●●
●

●

●
●●●

●

●
●
●●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●
●●●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●●●
●
●
●
●
●
●
●●

●

●●●
●
●●
●●
●
●

●●

●

●

●

●●●●●●
●
●●●●
●
●●

●

●●●

●

●
●
●
●
●●

●

●
●●●

●

●●●
●●
●
●●●
●
●●●
●●
●

●

●

●

●

●●●●
●
●

●
●●

●

●●●●●●
●
●
●
●●●●

●
●

●

●
●●●
●●●●●

●●

●
●
●●●

●

●

●

●●

●

●
●

●●●●

●
●

●

●●
●

●●
●

●

●

●

●●

●●

●
●

●

●●

●
●
●

●

●●

●●●

●

●●

●
●

●●

●
●

●●
●

●

●●

●
●●

●
●●
●
●

●

●●
●●●●●●●●●
●

●
●

●

●●●

●

●

●●

●●

●

●●
●

●

●
●

●●●●

●

●●●●●

●

●
●●
●●

●
●

●

●

●
●
●
●

●

●
●

●●
●

●

●
●

●●
●
●
●
●●●●●

●

●●●●

●

●●

●
●●
●

●
●●●●
●●
●
●●●●●●●●●●

●
●●●●

●
●

●
●

●●●●●●

●

●●

●

●●●●●
●

●

●
●●●●●●●●
●

●

●●

●

●
●●

●

●●
●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●●

●

●
●●

●

●●
●
●●

●

●

●
●

●
●
●

●

●●●●●●
●
●●●●

●

●

●●
●
●

●

●
●
●
●●
●●●
●
●●
●●
●

●

●
●
●●

●●
●

●●●●●●●●●●

●●●●
●●●

●

●

●●

●

●

●

●

●●

●●●●●
●●●●

●●●

●●
●
●●

●

●

●
●●

●

●

●

●●●●●●●●●●●●
●
●
●●●

●

●

●

●

●●

●

●
●●●
●
●●

●●●●●●
●
●
●●●
●●
●

●●●●●●●

●

●
●
●
●●●

●

●●●

●

●

●
●●

●
●

●●

●

●
●●●●●●
●●
●●

●●

●●

●●●●
●●●●●
●
●
●●●●●

●

●
●

●

●
●●
●●

●
●●

●●
●●
●●●●●●●●●●●●

●

●●

●●

●

●

●

●
●

●
●
●●●

●
●

●●●●●●●●●●●●●●

●

●

●

●●
●
●

●●●●

●

●

●●●●

●

●●●
●
●
●
●●
●●

●
●●●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●
●●
●

●

●●
●
●

●
●

●

●

●
●

●●

●
●

●
●
●
●●
●●●
●●
●
●
●
●●●
●

●

●
●
●
●

●

●●

●

●●

●

●

●

●●●

●
●

●●●

●●

●

●

●

●●

●●

●

●

●

●
●

●●

●

●●●
●●●●●
●

●

●

●

●

●●●

●
●●●●●

●

●

●

●

●

●
●●
●
●
●
●●
●●
●
●●
●●●●●●●
●●
●●
●●●

●
●

●

●●
●

●

●
●

●

●
●
●

●●●

●●
●●●

●

●
●

●●

●

●●●

●

●●●●
●

●

●

●
●

●

●●●

●

●●●●●●
●●
●●

●

●
●●

●
●●
●

●
●

●●

●
●●

●
●
●

●●●

●

●

●

●●
●

●

●
●

●
●
●●

●●
●●
●●

●

●●

●●
●●
●●●●
●

●●●●
●

●
●●●●●●●●
●●●●

●
●
●

●

●●●●●●●●
●●
●
●●
●●●

●
●●●●

●
●
●

●

●
●
●●●●
●●●
●
●●●●●
●
●●●●●
●●
●●●●
●
●●●●●●
●
●

●
●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●●
●
●
●●●
●

●
●●
●●●●

●
●
●●●

●

●●●
●
●

●●●●

●

●●

●

●●

●

●●

●

●
●●●
●
●●

●

●●●●
●●
●

●●●
●

●
●
●
●●●

●●●
●●

●

●●

●
●●
●●●●
●
●

●

●
●●●●
●
●

●

●●●●●●●

●●

●●●●●

●
●
●

●

●
●
●
●

●

●

●

●●

●
●
●●●

●

●
●
●
●

●

●
●

●
●
●●
●●●
●●
●

●

●●
●
●●●●

●●
●
●●●●●●
●●●
●●
●
●●●●

●●●●●
●●

●●●

●
●●●●

●●
●●●●●●●●●●

●

●
●●
●●●

●
●

●

●

●

●
●

●●

●

●

●●
●●

●●●●●●●

●

●●●●●●●●●

●●

●
●●

●

●●●●

●
●
●
●

●●
●
●
●

●
●●●●●●
●

●
●

●

●

●●●
●●●

●●●●●●●●●●●●●●
●
●●●
●●
●

●●●●●●●

●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●
●
●●●●●●
●

●

●

●

●

●●

●●

●

●

●
●
●●

●

●●
●●●
●●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●●●

●

●

●●
●
●

●

●●
●

●

●●

●
●●
●●
●

●

●

●

●

●

●

●

●
●

●●●

●
●

●
●●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●
●●●●
●●

●●●

●●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●
●
●●

●

●●

●

●
●●

●

●

●●

●●

●●

●
●●

●●

●
●●●

●
●

●●

●●●
●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●
●●●●●

●

●

●

●●●
●

●
●
●●

●
●
●●

●

●●●

●

●●

●●

●

●

●●

●

●

●●●●●●●●

●●●●●●●●●●●●

●●●●

●●

●

●
●
●

●

●●
●●●●

●●●●

●●●●●●●

●●●●●●●●

●

●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●
● ●

●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●
●●●●
●
●
●
●
●
●●●

●

●
●

●

●

●

●

●
●●
●

●●

●

●●

●
●
●●
●
●
●
●●

●

●

●

●

●
●
●●
●●●

●●●

●●
●

●

●

●

●

●●●●●●●●●●●●●
●●
●
●

●

●●●●●
●
●●
●●●
●
●●●●●●●●●●●

●

●●

●

●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●

●
●●
●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●●

●

●

●
●

●●
●

●●

●
●

●
●
●

●

●

●●●

●●●

●●●

●

●
●
●●

●●

●

●

●●
●

●●●●●●●
●●

●

●

●●

●●

●

●

●
●

●

●

●●●

●●

●
●●

●

●●
●●●
●
●●●
●

●

●●
●
●●●●
●
●●●
●
●
●
●●●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●

●●●●
●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●
●●●●

●

●●

●●

●●

●

●

●

●

●

●

●
●●

●
●
●

●●

●

●●●●

●●●●●●

●

●●

●

●●●●

●●●

●●●●

●
●
●●●●●●●●●●●●●●
●

●

●●●

●

●

●

●

●●●●●●●●

●●●●●●●

●
●●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●

●●●●

●●

●
●

●

●

●

●●

●

●

●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●

●

●
●●

●●●

●

●
●●●●●●●
●●●●●●●●●

10

100

1000

TRYCATCH TEST RULE ASSERT GENERIC

pattern

te
s
t
L
O

C

(b) Violin plot of the analyzed exceptional tests’ size in LOC grouped
by the patterns they use.

Fig. 3: Violin plots of: (3a) the projects’ size measures; (3b) patterns used in their tests. Vertical scales are logarithmic.

documentation and other artifacts where it features; therefore,

it is somewhat informal and potentially subjective. To manage

this threat, we proceeded as is customary in studies of Java

exceptions classes [31], [34], [41], [44] and manually classified

the usage of only standard Java exceptions—precisely, the

same list of Hassan et al. [31]. Furthermore, we only con-

sidered categories failure and fault, since usage category return

is most of the times sporadic and context-dependent—rather

than being an exception class’s intrinsic characteristic.

ORIGIN KIND USAGE

Java external local checked unchecked failure fault

% EXCEPTIONS 6 12 82 40 60 74 25
% TESTS 76 2 26 36 70 47 57
% PROJECTS 95 32 59 81 90 89 83

TABLE III: Each column lists the percentage of EXCEPTIONS,

TESTS, and PROJECTS that feature exception classes with

certain characteristics: defined in Java’s standard libraries, in

a different external library, or locally to the project; checked or

unchecked; used to signal failure or fault.

The top data row in Tab. III summarizes the result of our

classification. Out of 5 152 exception classes found in our tests:

1) 82% are project-local; 6% are Java standard exceptions, and

the remaining 12% are from external dependencies; 2) 40% are

checked types, and the remaining 60% are unchecked. Finally,

according to our classification of their intended usage, 74% of

all Java exceptions are for failures and 25% are for faults.h

Origin: Even though Java standard exceptions are only

6% of all tested exception classes, they are by far the most

widely used: 76% of all exceptional tests target an exception of

origin Java, and 95% of all projects include at least one such

test.i This indicates that the familiar Java exception classes

are tested extensively. It may also suggest that the bulk of

the exceptional behavior of most projects is not very project-

specific—because the project defines no exception classes or

tests them indiscriminately using abstract Java exception types.

Still, 59% of all projects also test for locally defined excep-

tions; and about 32% of all projects also test for exceptions

from external libraries. However, external exceptions feature

hThe missing 1% is a rounding error due to class java.io.EOFException

that we consider of usage return and we discuss in Sec. II and below.
iThese percentages don’t add up to 100% because a test or project may

target multiple exceptions of different origins.

in only 2% of the tests—and, indeed, the distribution of

number of tests for each origin per project in Fig. 4a says that

most projects have no more than 10 tests targeting external

exceptions. This suggests that the exceptional behavior of ex-

ternal libraries is seldom tested specifically—possibly because

libraries mainly expose standard exceptions, or developers

prefer testing abstract Java exception types when dealing with

third-party code.

Kind: According to Java’s official documentation,22

checked exceptions should be used when the “client can

reasonably be expected to recover from [the] exception”.

This guideline is somewhat informal, and as a result the

role of checked vs. unchecked exceptions has long been

a controversial point [39]. We found that projects test for

unchecked exceptions (90% of all projects, and 70% of all

tests) more frequently than for checked exceptions, but the

latter still feature prominently—and nearly 72% of all projects

include tests involving both checked and unchecked exceptions

(not shown in Tab. III). The minority of projects that only

test for checked (10%) or unchecked (19%) do an overall

limited amount of exceptional testing targeting at most a dozen

exception classes. Since the compiler checks that programs

include handling code for checked exceptions, less testing

might be needed for checked exceptions thanks to these

static checks. Nonetheless, we found no clear support for this

expectation: distributions of the number of tests per project

are qualitatively similar for checked and unchecked exceptions

(Fig. 4a); and exceptional tests targeting checked exceptions

are usually considerably larger than those targeting unchecked

exceptions (Fig. 4b). In all, the checked vs. unchecked debate

is far from being settled, and in practice it seems programmers

use any kind of exception classes without rigid rules.

Usage: Even though we classified 3 out of 4 Java exception

classes as “usage failure”, projects test for both kinds of

exceptional behavior—failure and fault—about as frequently, as

confirmed by the qualitatively similar distributions in Fig. 4a.

However, the median method testing for exceptions signaling

failure is nearly twice as big as one testing for fault (16 vs. 9

LOC). A fault indicates a bug in the program—which should

never occur—whereas a failure is often due to a transient

condition that may be recovered from. Therefore, a test that

finds a fault might not have much to do besides signaling it

to the programmer for debugging, and hence it is shorter than

6

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●●●
●
●

●●

●

●

●

●
●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●
●●

●

●

●●

1

10

100

1000

10000

external Java local

origin

#
 t
e
s
ts

●

●●

1

10

100

1000

10000

checked unchecked

kind

#
 t
e
s
ts

●●●

●

●●

1

10

100

1000

10000

failure fault

usage

#
 t
e
s
ts

(a) Number of tests targeting various exception classes

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●●

●

●

3

10

30

100

external Java local

origin

m
e
d
ia

n
 L

O
C ●●

●●
●●

●

●

●

●

●
●

●●

●

●
●●

●

3

10

30

100

checked unchecked

kind

m
e
d
ia

n
 L

O
C

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

3

10

30

100

failure fault

usage

m
e
d
ia

n
 L

O
C

(b) Median size in LOC of tests targeting various exception classes

Fig. 4: Violin plots of the analyzed projects’ total number of tests and median size of a test. Each plot groups data according

to various characteristics of the exceptions featured in tests: their origin (Java’s standard libraries, external, or local to the

project), their kind (checked or unchecked), and their usage (signaling failure or fault). Vertical scales are logarithmic.

a test that finds a failure and may try to see if the same calls

in different program states lead to different behavior.

Java exception java.io.EOFException is mainly used to

“signal end of stream”; however, “many other input operations

return a special value on end of stream rather than throwing

an exception”,23 which makes EOFException a class used

primarily to pass an additional return value rather than to signal

truly exceptional behavior. We inspected the tests targeting

this exception in projects Apache Hadoop24 and ExoPlayer25

(two large projects among those that test for this exception)

and confirmed that EOFException can be thrown as part of

a program’s normal operation: the tests of both26,27 expect

EOFException to be thrown.

Java standard exception classes are the most frequently

tested; unchecked exceptions are tested more frequently

than checked ones; exceptions signaling failure and fault

are tested about as frequently.

RQ2: A Closer Look at Some Projects

Kind: Larger projects with many tests invariably target

exceptions of both kinds. Project Spring Framework 28—a

widely-used Java framework—is an interesting example be-

cause it is designed so that it only throws unchecked excep-

tions.29 Nonetheless, 18% of its 2 460 exceptional tests target

34 checked exception classes—including several local to the

project. This confirms that it is practically impossible to stick

to only one kind of exceptions, since the roles of checked and

unchecked exceptions are irredeemably intermingled in Java.

Errors (subtypes of java.lang.Error) are a distinct cat-

egory of unchecked exceptions reserved for “serious prob-

lems that a reasonable application should not try to catch”30

such as OutOfMemoryError. Projects that primarily test for

errors frequently deal with low-level features of system pro-

gramming, such as virtual machines (Oracle GraalVM 31 and

Eclipse OpenJ932), core language features (Apache Commons

Lang,33 Google Guava,34 and Apache Flink 35) and language

manipulation and translation (Google J2ObjC 36). Dealing with

low-level features, these projects’ tests handle errors to check

robustness in different conditions of the runtime environment

they execute in. A clear example is a test in Apache Flink 37

that tests the behavior of integer overflows but also includes an

empty catch block for OutOfMemoryError with the comment

“this may indeed happen in small test setups. We tolerate this”.

Specific vs. generic exception: Exception-handling code

should be exception-class specific,38 whereas catch block

with exception types high up in the inheritance hierarchy

(such as Exception or even Throwable) are considered an

anti-pattern. Since abstract types Exception, Throwable, and

RuntimeException are among those featuring most frequently

in exceptional tests (respectively, 2nd, 6th, and 10th), this anti-

pattern may also occur in testing code. By manual analysis

of a few larger projects, we found at least a couple of

instances. Ten out of 12 of project Saturn’s39 test classes deal

exclusively with type Exception; on closer inspection, these

are integration tests, which need not differentiate between

specific exception types (a task for unit tests) but just detect

thrown exceptions [51]. Another instance is project Apache

Flink, which includes a very long method40 with 150 try/catch

blocks all for type Exception. In this idiom, a specific

exception type Specific is checked with an assertion that

e instanceof Specific in the catch block.
Static analysis and tests: a key usage of exceptions is

signaling runtime faults; however, some faults can also be

detected statically by source-code analysis. Take a relatively

basic but widespread bug: accessing a null reference. Java

uses exception NullPointerException to signal “attempts to

use null in a case where an object is required”;41 several

static analyzers, such as Infer [52] and lgtm,42 automatically

detect such faults. We looked at 10 of the projects with the

most tests that also use lgtm to detect and fix errors in

their code base. All of them still include exceptional tests

targeting NullPointerException, but the tests sometimes

cover corner cases that are hard to catch using static analysis,

or where using null is acceptable or even expected [39].

Project Apache ActiveMQ ’s43 iterators, for example, throw a

NullPointerException in some conditions when the iterator

is no longer valid; in this scenario,44 the exception doesn’t

signal a fault but rather returns information to the caller. Some

parts45 of Apache Geode also use NullPointerException for

inter-method communication. A couple of exceptional tests46

in Hibernate ORM 47 deal with using null to initialize object

structures with circular references—which is notoriously tricky

to analyze statically [53], [54]. In Apache Kafka,48 a test49 for

NullPointerException captures an error that occurs when

incorrectly nesting serializers—another scenario that is likely

to be off-limits for common static analysis algorithms.

7

C. RQ3: What coding patterns are used for exceptional test-

ing?

RQ3 analyzes the coding patterns (Sec. II-B) that are used in

exceptional tests, and relates them to other project features.

try/catch test rule assert generic

% TESTS 42 32 5 9 19
% PROJECTS 83 63 24 13 39

TABLE IV: Each column lists the percentage of exceptional

TESTS and PROJECTS that use any of the 5 coding patterns

try/catch, test, rule, assert, and generic (see Sec. II-B).

Tab. IV shows that the most widely used pattern is try/catch,

which features in 83% of all projects and 42% of all tests,

followed by pattern test. In contrast, patterns rule and assert

are the least frequently used—by 24% and 13% of all projects

and in 5% and 9% of exceptional tests. Pattern rule’s atypical

syntax (see Sec. II-B) may explain why it’s not widely used.j

Multiple patterns: The percentages in every row of Tab. IV

add up to more than 100%, because any one project or test

may use more than one pattern. Mixing multiple patterns in

the same test is not common: 94% of all tests stick to a

single pattern; the remaining 6% typically combine patterns

try/catch or assert with assertions using generic that look for

more specific exception types. A handful of tests combine

three patterns, but these are outliers that make up only 0.1% of

all tests. In contrast, it is common that a project includes tests

using different patterns (see Tab. V), even though only 2% of

projects include some tests for every pattern, and a substantial

number of projects use a single pattern: 19% of projects only

use pattern try/catch and 11% of projects only use pattern test.

To understand which characteristics of a project are associ-

ated with using more or fewer patterns, we fitted a Poissonk

regressive model using a project’s number of different patterns

as outcome variable, and the number of contributors, the

number of tests,l and the testing code’s age (measured by

its earliest commit date) as predictors. The estimated slope

coefficients for number of contributors and tests are positive

with 95% probability; hence projects with more contributors

and tests also tend to use more exceptional testing patterns.

Patterns and size: Fig. 3b pictures the distribution of size (in

LOC) of exceptional tests grouped according the patterns they

use. It confirms the intuition that some patterns lead to more

concise code than others. Pattern test is by far the most concise:

tests using it are on average 6 lines, and their distribution is

wider around and below the mean. Tests with pattern try/catch,

in contrast, are on average 33 lines, and their distribution

spreads over a wide range of lengths with many outliers.

Pattern try/catch is the most flexible, doesn’t depend on any

external library, and is used in combination with other patterns;

a large spread in test size is thus not surprising. Patterns assert

and generic are also quite flexible, which explains the outlier

jEven one of the developers who built this mechanism into JUnit admits
that he rarely uses it.50

kSuitable for “counting” outcome variables [55].
lUsing all tests or only exceptional tests lead to similar conclusions.

tests that reach large sizes; on the other hand, their “natural”

usage leads to concise tests (on average, around 12–13 lines

long) which make up the bulk of the distribution.

To understand which characteristics of a test are associated

with its size, we fitted a negative binomialm regressive model

using a test’s LOC size as outcome variable, and, as predictors,

the patterns it uses, the origin and kind of the exception

classes it features (see Sec. II-A), and whether it includes

assertions on the message and cause of any exceptions; to

control for overall project size, we also included the total

size of the project’s tests as a predictor. The results (see

Tab. VI) indicate that all predictors are strongly associated

with a test’s size. The strongest effect is that of patterns:

tests using pattern try/catch are the largest; those using patterns

rule, assert, and generic are 36%, 39%, and 40% the size; and

those with pattern test are the smallest at 18% the size. The

association between size and the exceptions’ origin is clear

but less prominent: tests featuring Java standard exceptions are

92% the size of those featuring external exceptions, whereas

those featuring project-local exceptions are 104% the latter’s

size. Somewhat counterintuitively, tests inspecting exception

messages or causes (columns MSG and CAUSE in Tab. VI)

tend to be smaller than those not inspecting them. There

is a positive association between a test suite’s overall size

(controlling for a confounding effect) and each exceptional

test’s average size but the effect is small in comparison with

the others. Finally, tests targeting unchecked exceptions tend

to be smaller than tests targeting checked exceptions, but the

effect is small (1% = 100 − 99 reduction in size). In all, the

patterns capture different ways in which developers write tests

trading off conciseness, expressiveness, and flexibility.

Patterns and checked/unchecked: Projects that only follow

pattern try/catch often disproportionately use checked exception

classes: on average, a project in this group includes 1.5
as many tests for checked exceptions than for unchecked,

and 29% of these projects only test for checked exceptions;

in contrast, projects that do not only use pattern try/catch

include, on average, 0.4 fewer tests for checked exception than

for unchecked, and just 4% of them only test for checked

exceptions. Since checked exceptions must be either caught

or explicitly propagated, a try/catch block is often necessary

in exceptional tests targeting checked exception, which may

make using other, more concise patterns redundant.

Projects that exclusively use pattern test in exceptional tests

show the reverse tendency, namely they primarily test for

unchecked exceptions: 78% of these projects only test for

unchecked exceptions; in contrast, just 14% of projects that do

not only use pattern test only test for unchecked exceptions.

Pattern test is a natural choice to write concise exceptional

tests; indeed, exceptional tests in projects using only this

pattern are, on average, half the size of those in other projects.

mA negative binomial generalizes a Poisson for outcome variables that are
overdispersed [55], like test size in our case (µ = 24 ≪ 1751 = σ

2).

8

% 18.6 17.4 10.8 10.7 9.8 7.0 5.9 3.4 2.0 2.0 1.6 1.5 1.3 1.2 1.2 1.2 1.1 0.8 0.7 0.4 0.4 0.4 0.3 0.1 0.1 0.1 0.1

TRY/CATCH ○ ○ ○ + ○ ○ ○ ○ ○ ○ ○ ○ ○ + + + + ○ + ○ + + + ○ + ○ +
TEST + ○ ○ ○ ○ + ○ + + ○ ○ ○ + + ○ ○ + + + ○ ○ + ○ + + + ○
RULE + + + + ○ + ○ + + ○ + + ○ ○ ○ + + ○ + ○ ○ + ○ ○ ○ ○ ○
ASSERT + + + + + + + ○ ○ ○ ○ ○ + + + + + + ○ ○ + ○ ○ ○ + ○ ○
GENERIC + + ○ + ○ ○ + ○ + ○ + ○ + + + ○ ○ ○ + + ○ ○ + + ○ ○ ○

TABLE V: For each combination of patterns (those marked by ○ in each column), the top row reports the percentage of all

projects whose exceptional tests use exclusively that combination. Combinations not shown never occurred among the projects.

PATTERN ORIGIN KIND INSPECTING

test rule assert generic JAVA LOCAL UNCHECKED MSG CAUSE LOC

0.18 0.36 0.39 0.40 0.92 1.04 0.99 0.73 0.83 1.06

TABLE VI: Regression estimates of each characteristic’s con-

tribution to a test’s size. More precisely, each number is the

exponential of the estimated slope coefficient of the corre-

sponding predictor’s variable in a negative binomial regression

with outcome test size. The exponential is taken to reverse the

logarithmic link function, so that the shown estimates are on

the outcome scale. All predictor variables except LOC (total

size of test code in the project) are dummy selector variables

(ℓ−1 variables for a factor with ℓ possible values; the missing

value thus corresponds implicitly to an estimated coefficient

of e0 = 1). All estimates are significant with 0.99 probability.

Exceptional tests using try/catch blocks are the most

common and longest; those using @Test(expected)

are the second most common and shortest.

RQ3: A Closer Look at Some Projects

The largest projects that exclusively use pattern try/catch tend to

be long-standing projects whose main development took place

in the past and currently undergo only standard maintenance.

Project Joda-Time,51 for example, was a date-and-time library

often used with older Java versions, but it is no longer

maintained since its functionalities were made available in Java

8’s package java.time. The project uses JUnit 3.8.2, which

requires Java’s try/catch to define exceptional tests.

Among the largest projects that exclusively use pattern test,

Algorithms52 (a collection of standard algorithms implemen-

tations) is a clear example of tests that privilege conciseness:

89% of its exceptional tests consist of a single call in the body,

and no exceptional test’s body is longer than 3 lines.

Project SonarQube53—a popular static analyzer for Java—

is one of the largest projects among those that extensively use

pattern rule, which features in nearly 70% of its exceptional

tests. We found that this pattern coexists with others—most

frequently, with generic assertions using AssertJ—to the extent

that the same developer may write, on the same day,54,55 tests

using both patterns: rule for simpler tests that mainly check that

a certain exception is thrown; and AssertJ fluent assertions for

“deeper” tests that inspect complex exception objects.

Project Apache Beam56—a framework for data-processing

tasks—is among the largest projects that use all 5 exceptional

test patterns. It is a clear example of how large projects with

many contributors (Beam counts 390 contributors to its test

code) naturally end up with a variety of different styles of

exceptional testing code. Beam’s class DataFlowRunnerTest’s

Git history57 is a microcosm of this dynamic. The class

includes tests using patterns try/catch, rule, assert, and generic;

different contributors (among the 19 that worked on this class)

introduced tests using only one of these different patterns. In

other words, each developer’s preferred practice coexists with

the others’.

The development history of Beam’s DataFlowRunnerTest

also shines light on the interplay between availability of JUnit

features and how tests are written. When, in late 2014, part

of this project was first written, developers added both tests

using try/catch and using rule. However, those using rule didn’t

take full advantage of the pattern’s expressive power until

two years later, when developers added assertions on the

exceptions’ messages. The project formally switched to JUnit

4.13—supporting pattern assert—at the end of 2018; however,

tests using the new pattern were added only months later, after

a period during which maintainers were aware of the new

pattern but also stuck to pattern rule for the time being.58

Pattern assert has been available for just a few years with

recent versions of JUnit (see Sec. II-B). The commit history

of the largest projects that primarily use this pattern clearly

show when the migration of older tests to use this new pattern

took place. Project RoaringBitmap59 (providing compressed

bitsets) is the largest project using only pattern assert; in a

large pull request that took place in April 2020,60 the project

migrated from JUnit 4 to 5, and updated all exceptional tests

to use pattern assert. Maintainers of project Neo4j 61 (a popular

graph database) planned the migration to JUnit 5 for over two

years;62 the migration is still ongoing,63 but already 80% of

the project’s 1 671 exceptional tests use pattern assert.

Assertion frameworks such as AssertJ have supported fluent

assertions, including for exceptional behavior, for years before

JUnit 5 made them more widely available. Several larger

projects that predominantly use pattern generic for exceptional

tests started to use this pattern early on and often kept using

it over JUnit 5’s pattern assert even after migrating to the

latest JUnit major version. Project Spring Boot Admin,64 for

example, only uses pattern generic, and chose to rewrite pattern

test with AssertJ assertions when updating the project to

JUnit 5;65 project Spring Initializr66 similarly rewrote pattern

rule with AssertJ features instead of JUnit 5’s assert.67

VI. LIMITATIONS AND THREATS TO VALIDITY

Threats to construct validity—are we measuring the right

things?—are limited given that we primarily measure well-

defined features (size, types, and so on). The classification in

9

exceptions according to their usage (see Sec. II-A) is more

delicate; to mitigate this threat, we limited it to well-known

and well-documented Java standard exceptions [31], and one

author reviewed the classification made by another one until

agreement was reached.

We took great care to minimize threats to internal validity—

are we measuring things right? Our tool JUnitScrambler (see

Sec. IV-C) implements complementary strategies to extract

useful information even from projects that are hard to build

automatically without a custom environment: it parses build

files to find dependencies and library versions; scans source

code to detect test classes when JUnit’s discovery process fails;

and feeds any additional information to JavaParser to boost

type resolution. Still, a few limitations remain: JUnitScrambler

does not recognize some build systems (e.g., Bazel or Make);

only processes JUnit tests; may detect an incorrect version of

JUnit in projects with overly complex build processes; may

miss some unusually complex combinations of fluent asser-

tions or exceptions whose type JavaParser cannot reconstruct.

We manually went through hundreds of projects and found

these cases are rare—but there are a few more exceptional

tests in the wild that don’t feature in our analysis.

Threats to external validity—do the findings generalize?—

mainly depend on the analyzed projects. The 1 157 projects

we analyzed (selected as described in Sec. IV-B) are all open-

source; it’s possible the exceptional tests of closed-source

industrial projects have different characteristics. Nonetheless,

our projects include plenty of commits of testing code, and

span a wide range of size, maturity, and application domains—

from widely used Java frameworks maintained by large devel-

opment teams to single-author simpler mobile apps.

VII. APPLICATIONS OF FINDINGS AND FUTURE WORK

Tested exceptions: A large portion (76%) of all tests we

analyzed target Java standard exceptions, which are also

prominent in web searches [31], StackOverflow posts [41],

and mobile app bug reports [38], [39]. Unchecked excep-

tions IllegalArgumentException, NullPointerException,

and IllegalStateException were among the most tested;

the same classes are most frequently implicated in API

misuses [35] and Android app bugs [39], and are among

those with often insufficient documentation [23], [24], [37].

Thus, studying even more closely the tests featuring these

exceptions in combination with the code that triggers them

is an interesting direction for future work.

Messages and documentation: Undocumented exceptions

(which may be thrown but are not mentioned by the documen-

tation or signature [23]) are a common reason for uncaught

exception bugs [23], [24], [39]. Exceptional tests could be a

source of implicit documentation in such cases. We found that

15% of exceptional tests detail the expected message (stored

by exception objects); and 17% use assertions equipped with a

string that describes what the assertion checks. Both are a form

of documentation68 that could be studied using natural lan-

guage processing techniques [3], [37] to help debugging and to

discriminate between correct and incorrect behavior [37], [40].

For example, one test69 in Apache Hadoop clearly outlines

which exceptions indicate which behavior (e.g., “setting empty

name should fail”), and hence it would be a valid supplement

to the tested method’s documentation.70 Such tests could also

identify patterns of good testing practices and serve as a guide

to writing better, more thorough exceptional tests.

Wrapping: Exception wrapping—a form of propagation—

is when one exception is caught and wrapped by another

exception [39]. Wrapping should not be used to hide errors

(which should not be handled, see Sec. V-B) within regular

unchecked exceptions—which has been found may lead to

crashes in Android apps [39]. We found 3% of all exceptional

tests (in 19% of all projects) test on the cause of an exception,

which indicates wrapping occurred. Such tests, although not

common, may contain precious implicit information useful to

debug an application’s most complex exceptional behavior.

Exceptional testing patterns: The frequent usage of pattern

try/catch has positive and negative implications. On the one

hand, it is the only pattern that can be used with any JU-

nit and Java versions—including for complex scenarios. On

the other hand, using try/catch with JUnit 4 is considered a

code smell [11], [56]. In fact, incorrect tests using try/catch

introduced silent bugs in the test suites of projects using

JUnit 4 [12]. It remains that, up to JUnit 5, the expressiveness

of alternative patterns test and rule remained limited (e.g., test

cannot assert on messages/causes, and rule’s unusual syntax

is somewhat controversial [12]). In all, it is not surprising

that developers of popular open-source projects have been

found [11] to often prefer good old try/catch over other patterns.

Introducing empty catch blocks is considered an anti-

pattern, since it is associated with more defects [28], [29],

[46], [49]. Nevertheless, our data suggests that it may be

legitimate in testing code (as opposed to application code):

empty catch blocks featured in about 50% of all exceptional

tests using pattern try/catch; more than 50% of such blocks

were accompanied by an informative comment (typically:

// expected) which explains that idiom’s purpose.

Despite its limited expressiveness, pattern test remains pop-

ular with developers—probably thanks to its conciseness—to

the extent that a “vintage @Test”71 JUnit 5 extension was

introduced to write pattern test even with the latest JUnit

versions (which no longer support it in the base library).

Instead, other JUnit features (e.g., pattern assert) have failed

to reach widespread adoption (e.g., 2/3 of projects that use

JUnit versions supporting assert do not actually use it). Using

our dataset and tool, we could perform a longitudinal study of

how projects migrated tests from JUnit 4 to newer versions—

extending the qualitative analysis of Sec. V-C—to shed light

on the interplay between available features and their adoption.

Finally, studying how AssertJ is used in combination with

JUnit could deepen our understanding of testing practices. We

found that 39% of all projects include exceptional tests using

pattern generic—usually through libraries such as AssertJ.

Indeed, AssertJ is growing in popularity [13], [48] since it

provides expressive and concise idioms for testing all sorts of

behaviour—including exceptions [11].

10

REFERENCES

[1] M. Pezzè and M. Young, Software Testing and Analysis: Process,

Principles and Techniques: Process, Principles, and Techniques. Wiley,
2007.

[2] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed.
Cambridge University Press, 2007.

[3] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè, “Automatic generation
of oracles for exceptional behaviors,” in ISSTA. ACM, 2016.

[4] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE TSE, 2019.

[5] J. Bloch, Effective Java, 3rd ed. Pearson Education Inc., 2018.

[6] S. McConnell, Code Complete, 2nd ed. Microsoft Press, 2004.

[7] B.-M. Chang and K. Choi, “A review on exception analysis,” Elsevier

IST, 2016.

[8] C. Ghezzi and M. Jazayeri, Programming language concepts, 3rd ed.
John Wiley & Sons, 1998.

[9] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice
Hall, 1997.

[10] F. Dalton, M. Ribeiro, G. Pinto, L. Fernandes, R. Gheyi, and B. Fonseca,
“Is exceptional behavior testing an exception? an empirical assessment
using Java automated tests,” EASE. ACM, 2020.

[11] E. Soares, M. Ribeiro, G. Amaral, R. Gheyi, L. Fernandes, A. Garcia,
B. Fonseca, and A. Santos, “Refactoring test smells: A perspective from
open-source developers,” in SAST. ACM, 2020.

[12] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” IEEE ICSME, 2015.

[13] A. Zerouali and T. Mens, “Analyzing the evolution of testing library
usage in open source java projects,” in IEEE SANER, 2017.

[14] A. Deursen, L. M. F. Moonen, A. Bergh, and G. Kok, Refactoring test

code. CWI (Centre for Mathematics and Computer Science), 2001.

[15] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” IEEE/ACM ASE, 2016.

[16] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for Java,” ACM OOPSLA, 2007.

[17] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” SIGSOFT/FSE 2011, Sep 2011.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
ICSE, 1999.

[19] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer, “Inferring better
contracts,” in ICSE. ACM, 2011.

[20] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On learning meaningful assert statements for unit test cases,” in ICSE.
ACM, 2020.

[21] J. B. Goodenough, “Exception handling: Issues and a proposed nota-
tion,” Commun. ACM, no. 12, pp. 683–696, 1975.

[22] Proceedings of the 5th International Workshop on Exception Handling,

WEH 2012, Zurich, Switzerland, June 9, 2012. IEEE, 2012.

[23] M. Kechagia and D. Spinellis, “Undocumented and unchecked: excep-
tions that spell trouble,” MSR, 2014.

[24] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of Java libraries: an empirical study,” MSR,
2016.

[25] M. Asaduzzaman, M. Ahasanuzzaman, C. K. Roy, and K. A. Schneider,
“How developers use exception handling in Java?” IEEE/ACM MSR,
2016.

[26] M. B. Kery, C. Le Goues, and B. A. Myers, “Examining programmer
practices for locally handling exceptions,” IEEE/ACM MSR, 2016.

[27] S. Nakshatri, M. Hegde, and S. Thandra, “Analysis of exception handling
patterns in Java projects: An empirical study,” IEEE/ACM MSR, 2016.

[28] G. B. De Pádua and W. Shang, “Studying the prevalence of exception
handling anti-patterns,” IEEE/ACM ICPC, 2017.

[29] B. Jakobus, E. A. Barbosa, A. Garcia, and C. J. P. de Lucena, “Con-
trasting exception handling code across languages: An experience report
involving 50 open source projects,” IEEE ISSRE, 2015.

[30] H. Melo, R. Coelho, and C. Treude, “Unveiling exception handling
guidelines adopted by Java developers,” in SANER. IEEE, 2019.

[31] F. Hassan, C. Bansal, N. Nagappan, T. Zimmermann, and A. H.
Awadallah, “An empirical study of software exceptions in the field using
search logs,” in ESEM. ACM, 2020.

[32] M. P. Robillard and G. C. Murphy, “Designing robust Java programs
with exceptions,” SIGSOFT/FSE, 2000.

[33] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” Elsevier JSS, 2015.

[34] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan, “Mining precon-
ditions of APIs in large-scale code corpus,” in SIGSOFT/FSE. ACM,
2014.

[35] M. Wen, Y. Liu, R. Wu, X. Xie, S. Cheung, and Z. Su, “Exposing library
API misuses via mutation analysis,” in ICSE. IEEE/ACM, 2019.

[36] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online Q&A forum reliable?: a study of API misuse
on stack overflow,” in ICSE. ACM, 2018.

[37] H. Zhong, N. Meng, Z. Li, and L. Jia, “An empirical study on api
parameter rules,” in ICSE. ACM, 2020.

[38] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android apps,” in
ICSE. ACM, 2018.

[39] R. Coelho, L. Almeida, G. Gousios, A. V. Deursen, and C. Treude,
“Exception handling bug hazards in android,” Springer EMSE, 2017.

[40] H. Chen, W. Dou, Y. Jiang, and F. Qin, “Understanding exception-related
bugs in large-scale cloud systems,” ASE, 2019.

[41] S. Mahajan, N. Abolhassani, and M. R. Prasad, “Recommending stack
overflow posts for fixing runtime exceptions using failure scenario
matching,” in ESEC/FSE. ACM, 2020.

[42] T. Nguyen, P. Vu, and T. Nguyen, “Code recommendation for exception
handling,” in ESEC/FSE. ACM, 2020.

[43] P. Zhang and S. Elbaum, “Amplifying tests to validate exception
handling code,” ICSE, 2012.

[44] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A. van
Deursen, “Effective and efficient api misuse detection via exception
propagation and search-based testing,” in ACM ISSTA. ACM, 2019.

[45] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and A. van
Deursen, “Botsing, a search-based crash reproduction framework for
Java,” in ASE. IEEE/ACM, 2020.

[46] F. Ebert, F. Castor, and A. Serebrenik, “A reflection on An Exploratory

Study on Exception Handling Bugs in Java Programs,” SANER. IEEE,
2020.

[47] E. S. F. Najumudheen, R. Mall, and D. Samanta, “Modeling and
coverage analysis of programs with exception handling,” in ISEC.
ACM, 2019.

[48] T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, and S. Chiba,
“An empirical study of method chaining in java,” in MSR. ACM, 2020.

[49] J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu, “Learning to
Handle Exceptions,” ASE, 2020.

[50] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the ide: Patterns, beliefs, and be-
havior,” IEEE TSE, 2019.

[51] D. Holling, A. Hofbauer, A. Pretschner, and M. Gemmar, “Profiting
from unit tests for integration testing,” in IEEE ICST, 2016.

[52] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez,
“Moving fast with software verification,” in NASA Formal Methods.
Springer, 2015.

[53] A. J. Summers and P. Müller, “Freedom before commitment: a
lightweight type system for object initialisation,” in OOPSLA. ACM,
2011.

[54] B. Meyer, “The dependent delegate dilemma,” in Engineering Theories

of Software Intensive Systems. Springer, 2005.
[55] R. McElreath, Statistical Rethinking: A Bayesian Course with Examples

in R and Stan. Chapman & Hall, 2015.
[56] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and

F. Palomba, “tsDetect: an open source test smells detection tool,” in
ESEC/FSE. ACM, 2020.

URL REFERENCES

1. https://stackoverflow.com/questions/156503

2. https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

3. https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html

4. https://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception/

5. https://github.com/junit-team/junit4/wiki/Exception-testing

6. https://assertj.github.io/doc/#assertj-core-exception-assertions

7. https://junit.org/junit5/

8. https://testng.org/doc/

9. https://developer.android.com/studio/test

10. https://code.google.com/archive/p/catch-exception/

11

https://stackoverflow.com/questions/156503
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html
https://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception/
https://github.com/junit-team/junit4/wiki/Exception-testing
https://assertj.github.io/doc/##assertj-core-exception-assertions
https://junit.org/junit5/
https://testng.org/doc/
https://developer.android.com/studio/test
https://code.google.com/archive/p/catch-exception/

11. https://junit.org/junit5/docs/current/user-guide/#launcher-api-discovery

12. https://javaparser.org/

13. https://cran.r-project.org/

14. https://github.com/eclipse/eclipse-collections

15. https://github.com/eclipse/eclipse-collections/blob/
63be239538ff2676680ff57294e5aa08ce03b602/CONTRIBUTING.md

16. https://github.com/apache/geode/blob/
4b84af392df529a94a7d3163966d9b28ae9cf79c/TESTING.md

17. https://cwiki.apache.org/confluence/display/GEODE/About+Unit+
Testing

18. https://github.com/hazelcast/hazelcast

19. https://sonarcloud.io/dashboard?id=hz-os-master

20. https://github.com/apilayer/restcountries

21. https://github.com/processing/processing/blob/
4cc297c66908899cd29480c202536ecf749854e8/README.md

22. https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

23. https://docs.oracle.com/javase/8/docs/api/java/io/EOFException.html

24. https://github.com/apache/hadoop

25. https://github.com/google/ExoPlayer

26. https://github.com/apache/hadoop/blob/
2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/
hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.
java#L200

27. https://github.com/google/ExoPlayer/blob/
5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/
core/src/test/java/com/google/android/exoplayer2/extractor/
DefaultExtractorInputTest.java#L140

28. https://github.com/spring-projects/spring-framework

29. https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch11s02.html

30. https://docs.oracle.com/javase/8/docs/api/java/lang/Error.html

31. https://github.com/oracle/graal

32. https://github.com/eclipse/openj9

33. https://github.com/apache/commons-lang

34. https://github.com/google/guava

35. https://github.com/apache/flink

36. https://github.com/google/j2objc

37. https://github.com/apache/flink/blob/
fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/
src/test/java/org/apache/flink/streaming/runtime/operators/windowing/
KeyMapTest.java#L101

38. https://github.com/junit-team/junit4/wiki/Exception-testing#
trycatch-idiom

39. https://github.com/vipshop/Saturn

40. https://github.com/apache/flink/blob/
df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/
java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.
java#L130

41. https://docs.oracle.com/javase/8/docs/api/java/lang/
NullPointerException.html

42. https://lgtm.com/

43. https://github.com/apache/activemq

44. https://github.com/apache/activemq/blob/
9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/
src/test/java/org/apache/activemq/broker/region/cursors/
FilePendingMessageCursorTestSupport.java#L83

45. https://github.com/apache/geode/blob/
4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/
distributedTest/java/org/apache/geode/internal/cache/execute/
OnGroupsFunctionExecutionDUnitTest.java

46. https://github.com/hibernate/hibernate-orm/commit/
3489f75e1d455049cffd45694f025b97487b429f,https:
//lgtm.com/projects/g/hibernate/hibernate-orm/rev/
1e5a8d3c434c6791b89281c4ebf04ef08181fcd7

47. https://github.com/hibernate/hibernate-orm/

48. https://github.com/apache/kafka

49. https://github.com/apache/kafka/blob/
9c8f75c4b624084c954b4da69f092211a9ac4689/streams/src/test/
java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java#L73

50. https://github.com/junit-team/junit4/issues/706#
issuecomment-21385116

51. https://github.com/JodaOrg/joda-time

52. https://github.com/pedrovgs/Algorithms

53. https://github.com/SonarSource/sonarqube

54. https://github.com/SonarSource/sonarqube/commit/
14d6de3529b12ec0af367e551cf66ac6daae1ca7

55. https://github.com/SonarSource/sonarqube/commit/
e4b519ed129dbc7b76eab00d6c48166a8993e35f

56. https://github.com/apache/beam

57. https://github.com/apache/beam/blob/
f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/
google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/
dataflow/DataflowRunnerTest.java

58. https://github.com/apache/beam/pull/5150#discussion_r182212260

59. https://github.com/RoaringBitmap/RoaringBitmap

60. https://github.com/RoaringBitmap/RoaringBitmap/pull/396

61. https://github.com/neo4j/neo4j

62. https://github.com/neo4j/neo4j/commit/
0ce66ab6ebd454f9dbb5a0cf36e0f2483edec413

63. https://github.com/neo4j/neo4j/pull/12444#
pullrequestreview-398471953

64. https://github.com/codecentric/spring-boot-admin

65. https://github.com/codecentric/spring-boot-admin/commit/
caef5a004cbbc4ba897d854094b2546efd15d52b#

66. https://github.com/spring-io/initializr

67. https://github.com/spring-io/initializr/commit/
2816c216315b989c45c25c18fd9f72bb606db8ee#
diff-e49dd42170d49f6c1eb73139645c48cf

68. https://rules.sonarsource.com/java/RSPEC-2698

69. https://github.com/apache/hadoop/blob/
2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/
hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/
FSXAttrBaseTest.java#L274

70. https://github.com/apache/hadoop/blob/
2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/
hadoop-common-project/hadoop-common/src/main/java/org/apache/
hadoop/fs/FileSystem.java#L3049-L3062

71. https://junit-pioneer.org/docs/vintage-test/

12

https://junit.org/junit5/docs/current/user-guide/##launcher-api-discovery
https://javaparser.org/
https://cran.r-project.org/
https://github.com/eclipse/eclipse-collections
https://github.com/eclipse/eclipse-collections/blob/63be239538ff2676680ff57294e5aa08ce03b602/CONTRIBUTING.md
https://github.com/eclipse/eclipse-collections/blob/63be239538ff2676680ff57294e5aa08ce03b602/CONTRIBUTING.md
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/TESTING.md
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/TESTING.md
https://cwiki.apache.org/confluence/display/GEODE/About+Unit+Testing
https://cwiki.apache.org/confluence/display/GEODE/About+Unit+Testing
https://github.com/hazelcast/hazelcast
https://sonarcloud.io/dashboard?id=hz-os-master
https://github.com/apilayer/restcountries
https://github.com/processing/processing/blob/4cc297c66908899cd29480c202536ecf749854e8/README.md
https://github.com/processing/processing/blob/4cc297c66908899cd29480c202536ecf749854e8/README.md
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/8/docs/api/java/io/EOFException.html
https://github.com/apache/hadoop
https://github.com/google/ExoPlayer
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java##L200
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java##L200
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java##L200
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java##L200
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/spring-projects/spring-framework
https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch11s02.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Error.html
https://github.com/oracle/graal
https://github.com/eclipse/openj9
https://github.com/apache/commons-lang
https://github.com/google/guava
https://github.com/apache/flink
https://github.com/google/j2objc
https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101
https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101
https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101
https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101
https://github.com/junit-team/junit4/wiki/Exception-testing##trycatch-idiom
https://github.com/junit-team/junit4/wiki/Exception-testing##trycatch-idiom
https://github.com/vipshop/Saturn
https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java##L130
https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java##L130
https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java##L130
https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java##L130
https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://lgtm.com/
https://github.com/apache/activemq
https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f, https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7
https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f, https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7
https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f, https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7
https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f, https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7
https://github.com/hibernate/hibernate-orm/
https://github.com/apache/kafka
https://github.com/apache/kafka/blob/9c8f75c4b624084c954b4da69f092211a9ac4689/streams/src/test/java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java##L73
https://github.com/apache/kafka/blob/9c8f75c4b624084c954b4da69f092211a9ac4689/streams/src/test/java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java##L73
https://github.com/apache/kafka/blob/9c8f75c4b624084c954b4da69f092211a9ac4689/streams/src/test/java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java##L73
https://github.com/junit-team/junit4/issues/706#issuecomment-21385116
https://github.com/junit-team/junit4/issues/706#issuecomment-21385116
https://github.com/JodaOrg/joda-time
https://github.com/pedrovgs/Algorithms
https://github.com/SonarSource/sonarqube
https://github.com/SonarSource/sonarqube/commit/14d6de3529b12ec0af367e551cf66ac6daae1ca7
https://github.com/SonarSource/sonarqube/commit/14d6de3529b12ec0af367e551cf66ac6daae1ca7
https://github.com/SonarSource/sonarqube/commit/e4b519ed129dbc7b76eab00d6c48166a8993e35f
https://github.com/SonarSource/sonarqube/commit/e4b519ed129dbc7b76eab00d6c48166a8993e35f
https://github.com/apache/beam
https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java
https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java
https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java
https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java
https://github.com/apache/beam/pull/5150#discussion_r182212260
https://github.com/RoaringBitmap/RoaringBitmap
https://github.com/RoaringBitmap/RoaringBitmap/pull/396
https://github.com/neo4j/neo4j
https://github.com/neo4j/neo4j/commit/0ce66ab6ebd454f9dbb5a0cf36e0f2483edec413
https://github.com/neo4j/neo4j/commit/0ce66ab6ebd454f9dbb5a0cf36e0f2483edec413
https://github.com/neo4j/neo4j/pull/12444#pullrequestreview-398471953
https://github.com/neo4j/neo4j/pull/12444#pullrequestreview-398471953
https://github.com/codecentric/spring-boot-admin
https://github.com/codecentric/spring-boot-admin/commit/caef5a004cbbc4ba897d854094b2546efd15d52b#
https://github.com/codecentric/spring-boot-admin/commit/caef5a004cbbc4ba897d854094b2546efd15d52b#
https://github.com/spring-io/initializr
https://github.com/spring-io/initializr/commit/2816c216315b989c45c25c18fd9f72bb606db8ee#diff-e49dd42170d49f6c1eb73139645c48cf
https://github.com/spring-io/initializr/commit/2816c216315b989c45c25c18fd9f72bb606db8ee#diff-e49dd42170d49f6c1eb73139645c48cf
https://github.com/spring-io/initializr/commit/2816c216315b989c45c25c18fd9f72bb606db8ee#diff-e49dd42170d49f6c1eb73139645c48cf
https://rules.sonarsource.com/java/RSPEC-2698
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java##L3049-L3062
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java##L3049-L3062
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java##L3049-L3062
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java##L3049-L3062
https://junit-pioneer.org/docs/vintage-test/

	Introduction
	Background
	Exceptions: What They Are For
	Exceptional Testing Patterns
	Pattern try/catch
	Pattern test
	Pattern rule
	Pattern assert throws
	Pattern generic assertion

	Related Work
	Study Design
	Research Questions
	Project Selection
	Analysis Process

	Results
	RQ1: How often is exceptional behavior tested?
	RQ2: What kind of exceptional behavior is tested?
	RQ3: What coding patterns are used for exceptional testing?

	Limitations and Threats to Validity
	Applications of Findings and Future Work
	References

