
Reconciling the Past and the Present: An Empirical

Study on the Application of Source Code

Transformations to Automatically Rejuvenate Java

Programs

Reno Dantas, Antônio Carvalho Júnior, Diego Marcílio, Luísa Fantin,

Uriel Silva, Walter Lucas, and Rodrigo Bonifácio

Computer Science Department

University of Brasília

Brasília, Brazil

Abstract—Software systems change frequently over time, either
due to new business requirements or technology pressures.
Programming languages evolve in a similar constant fashion,
though when a language release introduces new programming
constructs, older constructs and idioms might become obsolete.
The coexistence between newer and older constructs leads to
several problems, such as increased maintenance efforts and
steeper learning curve for developers. In this paper we present a
RASCAL Java transformation library that evolves legacy systems
to use more recent programming language constructs (such as
multi-catch and lambda expressions). In order to understand how
relevant automatic software rejuvenation is, we submitted 2462
transformations to 40 open source projects via the GitHub pull
request mechanism. Initial results show that simple transforma-
tions, for instance the introduction of the diamond operator, are
more likely to be accepted than transformations that change the
code substantially, such as refactoring enhanced for loops to the
newer functional style.

I. INTRODUCTION

Mainstream programming languages present a certain sim-

ilarity to software: in order to keep them up to date, while

attending to the user needs and technology pressures, both

have to evolve through time. To cite a few examples, the C++

programming language has evolved substantially in the current

decade, with new releases of the standard being published in

2011, 2014, and 2017 (still in a draft version). Since 2008,

Python is available in two major releases (2.x and 3.x) that

are backward incompatible, and developers still struggle to

chose the right version to use when starting a new project.

Java programming language has evolved as well, with some

substantial improvements present in the Tiger (J2SE 5.0,

2004), Dolphin (Java SE 7, 2011), and Spider (Java SE 8,

2014) releases.

However, when a language evolves, new idioms and tools

to solve recurrent problems also emerge. In situations where

a legacy system is able to use new features of a language,

it is common to find new idioms coexisting with older ones,

which might hinder developers to understand and maintain a

software [1]. To mitigate this problem, Overbey and Johnson

suggest the use of refactoring tools to allow programming lan-

guages to evolve [1], and thus help to introduce new language

constructs and idioms in legacy systems—a process named

software rejuvenation [2]. Actually, this has become a research

trend and several tools have been recently proposed [3, 4, 5, 6].

Research problem. To the best of our knowledge, the

existing literature does not present any report about a large

scale experiment involving the refactoring of real systems

towards programming language evolution, which leads to the

central research question we investigate here: Is it worth it

to refactor a Java legacy system to use new programming

language constructs and idioms? Answering this research

question might help researchers and tool developers to better

understand what kinds of transformations are welcome and

what features refactoring tools should provide to support

global rejuvenation efforts.

Paper contributions. The main contributions of this re-

search work are two fold. First we present RJTL (Section II),

a RASCAL library that implements a set of transformations to

migrate Java legacy systems to use new programming language

constructs (including source code transformations to introduce

the Java multi-catch construct, the diamond operator, and

lambda expressions). Second, we report the results of an

empirical study (Sections III and IV) that applied 2462 source-

code transformations in different open source projects using

our RASCAL library. We discuss our findings in Section V and

relate our work to the existing research literature in Section VI.

Finally, we present some final remarks and future work in

Section VII.

II. RJTL: A JAVA TRANSFORMATIONS LIBRARY

In this research we are implementing a set of RASCAL Java

transformations (RJTL) to support the evolution of legacy

systems,1 towards the usage of more recent constructions of

the language. Ideally, developers should keep the code updated

with new programming language constructs [1], but many

1RJTL is available at https://goo.gl/jmosUT

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
ERA Track

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

497



factors prevent this from happening in a timely fashion. Our

transformations automate this update task and target constructs

which may not have been used due to different reasons, such

as the code having been written in a prior version of Java

or because the development team was not yet familiar with

features recently introduced in the language.

RJTL includes as central piece a RASCAL module called

Driver, which is responsible for acquiring the parsed Java files

(as abstract syntax trees – ASTs) and applying transformations

on a selection of them. It reads from a CSV file some project

metadata, such as the project’s name, the transformation to

be applied, and in which percentage of the cases it should

be performed. Note that only one transformation is chosen

at a time. In addition, the transformation is not necessarily

performed in each and every possible case, only in some

fraction of them, stated by the percentage value. The reason

for allowing only one transformation at a time, and a limited

number of executions, is to enable us to apply the library and

generate outputs (log files) with varying number of changed

lines of code. This is an important facility, which allows us

to measure how the size of the transformation may affect the

perceived benefit from the developer’s point of view.

The decision to use RASCAL as the tool for implementing

our transformations was based on its primitives for performing

static code analysis and manipulation using high-level pro-

gramming constructs, such as traversing through ASTs using

the Visitor pattern, or being able to pattern match concrete

Java’s syntax elements to a specific node in an AST. In

addition, RASCAL has a strong similarity with Java, regarding

its syntax as well as its runtime environment (JVM). It is also

possible to execute Java code from a RASCAL program, which

we envision to be useful for us in a near future.

At the time we started this research, there was only a

RASCAL Java syntax definition for the Tiger version (Java

5). Therefore, we had to implement our own syntax definition

for Java 8 from scratch. Although our syntax definition does

not use all disambiguation features of RASCAL, currently it

recognizes 99.7% of the Java code from our benchmarks. We

have already implemented several transformations, including

(a) Introduction of the diamond operator, (b) Introduction

of the switch-string constructor, (c) Introduction of variadic

arguments, (d) Introduction of the multi-catch constructor,

and (e) Introduction of lambda expressions, which converts

anonymous inner classes and enriched for loops to the Java

functional style.

These transformations required 4229 lines of RASCAL code.

In truth, some of the transformations (such as the introduction

of the diamond operator and the switch-string constructor)

were elegantly implemented using only AST transformations.

In these situations, where we do not have to query the

type system, RASCAL features are outstanding. However, to

implement more complex transformations, such as converting

anonymous inner classes into lambda expressions, we have to

extract some simple facts from the type system—in order to

check a number of preconditions [3]. In our experience, other

tools (such as Eclipse JDT) provide more facilities to query

the declared types of a Java project than RASCAL, particularly

because RASCAL is a general purpose meta-programming

language environment that is able to analyze programs in

different languages. For this reason, we are working on a

specific RASCAL infrastructure to help us extract facts from

Java declared types in a more declarative, simplified, manner.

In the present paper we share our early findings with the

application of RJTL and these transformations. To check

their effectiveness, we run our library in a number of other

open source projects and submit the generated output as pull

requests. We experiment with large and small patches, ranging

from multiple files changed to submissions containing only a

few transformations, as discussed later in Section IV.

III. STUDY SETTINGS

To investigate the general research question of this work

(Is it worth it to refactor a Java legacy system to use new

programming language constructs and idioms?) we conducted

a first empirical study that consisted of: (a) applying RJTL

transformations to open source projects, (b) submitting pull

requests with the results of the transformations, and (c)

evaluating the pull requests assessments from the projects’

contributors. This way, we can answer the following research

questions: (RQ1) Do open source developers accept contri-

butions for rejuvenating legacy systems?, (RQ2) What are

the reasons that motivate open source developers to reject

transformations for rejuvenating legacy systems? and (RQ3)

Considering the current set of RJTL transformations, which

ones are more likely to be accepted?

The selected projects and the transformations we used to

rejuvenate the legacy systems are the controlled variables

of this study. In addition to our analysis, we measure the

total number of transformations, the total number of lines

of changed code, and the number of accepted, rejected, and

ignored pull requests. To build our population of interest, in

May 2017 we selected the 100 most popular Java open source

systems from GitHub. We used the GitHub number of stars

as measurement of popularity. From this initial population,

we randomly selected 40 projects as the targets of our trans-

formations and then we also randomly selected the types of

transformations we would apply for each one of these target

projects. Most of these steps were supported by Python scripts.

Before applying the transformations for a given project, we

first clone its repository and check-out the most active branch

of development. We then execute the specific build of the

project (either using Maven or Gradle build systems), running

all available tests. We considered this step necessary because

we decided to only apply a transformations to a system after

we had been able to successfully build it. This decision allows

us to identify transformations that might actually break a sys-

tem in specific scenarios. After that, we configure the input file

for the RJTL Driver and run a set of RJTL transformations

that has been randomly selected for a particular project. In the

final step, we rebuild the system running all test cases. In the

cases where we accidentally introduced a compilation error or

a bug identified by a failed test case, we create a RJTL issue

498



and checkout the related file, restoring it to the version prior

to the transformation. In some cases, it was also necessary to

fix some source code formatting issues. At first, this activity

was performed manually. But, by the end of the research, we

started to use the google-java-format tool to fix formatting

issues only in the parts of a file that had been changed by a

RJTL transformation.

We submitted the results of the code changes via the

GitHub pull request mechanism, in order to understand the

acceptance rate of our transformations. We followed two

different strategies here. In the first one, we submitted all

changes (often involving different types of transformations) as

a single pull request; in the second, we submitted several pull

requests to the same project. In summary, we collected data

from 45 pull requests submitted to 40 open source projects.

They correspond to 2462 transformations that changed 6399

lines of code in 1207 files. We collect most of the relevant

data using the log files produced by RJTL. In addition, we

use information present in the GitHub pull request to compute

the number of lines that actually changed (that is, the total

number of lines that have been added and removed in a pull

request).

We discarded from our analysis wrong pull requests that we

submitted. For instance, in a specific case we submitted a pull

request after a merge operation, which in the end combined

contributions from other developers in the pull request. We

also discarded from our analysis pull requests with more than

500 changed files.

IV. RESULTS

The results achieved from the pull requests were classified

in three forms: Accepted, when the pull request has been

merged; Ignored, when we did not receive any response yet;

and Rejected, when the pull request was closed without merg-

ing. We further classified the Rejected status into rejections

motivated because the target system should be compatible with

previous versions of Java (Rej. Version) and rejections because

the maintainers considered the results of the pull request

inadequate (Rej. Negative Effect). Figure 1 summarizes the

acceptance rate of the pull requests, according to the cate-

gories just introduced. Accepted pull requests corresponded

to 44.4%; rejected pull requests corresponded to 53.3% (31%

due to incompatible versions and 22.2% due to inadequate

results); and ignored pull requests corresponded to 4.44% of

our observations.

Regarding the accepted pull requests, the introduction of

the Multi Catch construct and the Diamond Operator are the

transformations with higher acceptance rate (80% and 55%,

respectively). The other transformations present a significantly

lower acceptance rate. For instance, only 23% of the pull

requests that transform anonymous inner classes and enhanced

for loops into lambda expressions have been accepted. In this

study, we concentrate our analysis in these three transforma-

tions only, because we sent a few pull requests involving the

other transformations supported by RJTL.

0

5

10

15

20

Accepted Ignored Rej. Negative Effect Rej. Version

Status of the PRs

N
u
m

b
e
r 

o
f 
P

R
s

Fig. 1. Status of the pull requests.

Although we only submitted 5 pull requests involving the

introduction of the Multi-Catch construct, four of them have

been merged. They comprehend 56 transformations applied to

35 files, and leading to the removal of 130 lines of code. The

introduction of the Multi-Catch construct brings the benefit

of eliminating source code clones and reducing the number

of lines of code. It is also a transformation that is relatively

easy to understand the results. Listing 1 shows an example

of a merged Multi-Catch transformation. In this example, we

merged two catch blocks using the multi-catch construct.

The higher acceptance rate of this transformation might have

been motivated to both the benefits (clone and lines of code

removal) and easy of understanding.

- } catch (IOException e) {

- base64DecodeField.setText(e.getMessage());

- base64DecodeField.setEnabled(false);

- } catch (IllegalArgumentException e) {

+ } catch(IOException | IllegalArgumentException e) {

base64DecodeField.setText(e.getMessage());

base64DecodeField.setEnabled(false);

}

Listing 1. Example of a multi-catch transformation.

We created 20 pull requests of the diamond operator

transformation (11 have been accepted), corresponding to 593

transformations applied to 256 files, and that changed 1188

lines of code. This is a simple transformation whose results

are easy to understand, although it does not improve structural

properties of the source code. In spite of that, more than

50% of the pull requests with this kind of transformation

have been accepted. We believe that this acceptance rate is

mostly because the results of this transformation are easy to

understand (Listing 2 shows an example) and they lead to a

slight simplification of the source code.

We submitted 16 pull requests of the lambda expression

transformations. These transformations convert anonymous

inner classes and enhanced for loops into lambda expressions,

considering a set of preconditions [3]. Only three pull requests

have been accepted, eight pull requests have been rejected

because the target system (or library) should still support

Java 6, and five pull requests have been rejected because

the systems’ maintainers considered them inadequate. The

criticism related to the results of the transformations are

mostly related to the maintainers not being convinced that the

499



- Map<String,Map<String,Integer>> _map = new HashMap<String,Map<String,Integer>>();

+ Map<String,Map<String,Integer>> _map = new HashMap<>();

Listing 2. Example of the transformation that introduces the diamond operator.

introduction of lambda expressions improve the source code.

In addition, some maintainers actually believe that, in some

situations, the use of lambda expressions might actually lead

to a poor performance, when compared to a straight enhanced

for loop.

After analyzing some of the lambda transformations that

we submitted as pull requests, we agree that only part of the

results lead to a code improvement (in terms of legibility),

though some transformations actually lead to a code that is

even harder to understand. It is important to note that other

tools (such as LAMBDAFICATOR) would lead to the same

result. That is, not all enhanced for loops are good candi-

dates for applying the transformation, even in the situations

they satisfy the constraints. For instance, Listing 3 shows an

example we believe the transformation improves source code

readability (using a filter pattern)—though this can be seen

as a matter of opinion, affected by how familiar with the

functional programming style the developer is. In contrast,

Listing 4 shows an example of transformation that does not

improve the source code. Both examples were submitted in a

single, later rejected, pull request.

V. DISCUSSION AND THREATS TO VALIDITY

We found some evidences that open source developers ac-

cept contributions for rejuvenating legacy systems, particularly

when the benefits are clear to the developers. That is, a pull

request that significantly modifies the source code might be

hard to understand and the rejuvenation effort might not be

integrated into the source code. Nevertheless, the maintainers

of google/binavi accepted a pull request involving 135

transformations (87 files) of the diamond operator. Therefore,

it seems to us that a global transformation involving simple

transformations might be applied using a unique pull request;

whereas complex transformations should be submitted using a

single pull request per code change—since the consequences

might not be easily understood. The size of our pull requests

is a threat that might compromize the generalization of our

results.

We found two main reasons that lead maintainers to reject

external rejuvenation efforts. First, to our surprise, many

systems and libraries considered in our study still use Java

6–although Java 8 was introduced in 2014. Moreover, many

applications in production still run on top of older JVMs,

and some Java libraries are also used to develop Android

applications, whose platform does not full supports Java 8.

This finding slightly contrast with existing works, which

suggest the adoption of programming language features even

before they are officially released [7].

Another threat to the validity of our work is the existence

of false-positives, which was the second main reason that

motivated developers to reject our pull-requests. Here a false-

positive occurs when we transform a piece of code to introduce

a new language feature and the result does not lead to a

perceived source code improvement. This problem particularly

occurred on the lambda transformations, which means that

some research might be necessary to fully understand the

situations in which it is worth it to transform anonymous inner

classes and enhanced for loops into lambda expressions. Since

we designed our transformations taking into account other

tools [8], we believe that those tools might also introduce

false-positives. Finally, we found that simple transformations

(multi-catch and diamond operator) with clear benefits are

more likely to be integrated into the code bases.

VI. RELATED WORK

Although the work of Overbey and Johnson was the first

to advocate the use of refactoring tools to help with software

rejuvenation [1], Khatchadourian et al. present an automated

approach for converting legacy Java systems to use enumer-

ations [9]. More recently, several works have been proposed

to deal with this problem, evolving Java systems to use new

programming language constructs and idioms. For instance,

LAMBDAFICATOR implements a set of refactorings to trans-

form Java anonymous inner classes and enriched for loops into

lambda expressions [3]. LAMBDAFICATOR considers a number

of preconditions before applying a transformation, and we are

actually taking them into account when implementing some

of our transformations.

Tsantalis et al. detail an approach that automatically elimi-

nates particular types of clone using lambda expressions [6].

According to the authors, these particular types of clone (that

present behavioral differences) are hard to eliminate without

lambda expressions. Khatchadourian and Masuhara present an

approach that automatically converts the skeletal implementa-

tion design pattern to default methods in Java interfaces [4, 5].

Similar to our investigation, the authors of this mentioned work

empirically evaluated the acceptance of the proposed approach

by sending pull requests with the elimination of the skeletal

pattern to 19 open source projects (four pull requests had been

accepted).

VII. FINAL REMARKS

In this paper we presented a RASCAL library (RJTL) for

rejuvenating Java systems and the results of an empirical study

we conducted to understand the challenges of applying trans-

formations to evolve legacy systems to use new programming

language constructs. We submitted 45 pull requests related to

our transformations to several open source systems, with an

acceptance rate around 44%. Our results reveal that simple

transformations (such as introducing the multi-catch construct

500



- for (CoreLabel cl : m.originalSpan) {

- if (interrogatives.contains(cl.word())) {

- return true;

- }

- }

- return false;

+ return m.originalSpan.stream().anyMatch(cl -> interrogatives.contains(cl.word()));

Listing 3. First example of the lambda transformation.

- for (int m : c) {

- List<Integer> goldCluster = mentionToGold.get(m);

- if (goldCluster != null) {

- goldCounts.incrementCount(goldCluster);

- }

- }

+ c.forEach(m -> {

+ List<Integer> goldCluster = mentionToGold.get(m);

+ if (goldCluster != null) {

+ goldCounts.incrementCount(goldCluster);

+ }

+ });

Listing 4. Second example of the lambda transformation.

and the diamond operator) are more likely to be accepted than

transformations whose consequences are harder to understand.

Currently we are investigating the situations in which refac-

toring a legacy Java system to introduce lambda expressions

lead to source code improvements. Other than the nature and

contents of the transformation itself, another relevant aspect is

the moment that a transformation is introduced into the system.

As our research noted, some pull requests were delayed or

rejected because the code they changed had not been modified

recently. That is, due to that piece of the software being

considered stable, language-updating refactorings were not

useful to the teams. Based on these findings, as future work,

we intend to investigate if integrating the transformations as

part of the regular development workflow would improve their

perceived benefit and increase their acceptance. Our goal is to

set up a tool that will watch a project repository for changes

and automatically create pull requests for the modified code

that contains obsolete constructs, moments after that code is

committed.

REFERENCES

[1] Jeffrey L. Overbey and Ralph E. Johnson. Regrowing a

language: Refactoring tools allow programming languages

to evolve. In Proceedings of the 24th ACM SIGPLAN

Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’09, pages 493–

502, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-766-0.

[2] A. Kumar, A. Sutton, and B. Stroustrup. Rejuvenating

C++ programs through demacrofication. In 2012 28th

IEEE International Conference on Software Maintenance

(ICSM), pages 98–107, Sept 2012.

[3] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda.

Crossing the gap from imperative to functional program-

ming through refactoring. In Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2013, pages 543–553, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2237-9.

[4] Raffi Khatchadourian and Hidehiko Masuhara. Automated

refactoring of legacy java software to default methods.

In Proceedings of the 39th International Conference on

Software Engineering, ICSE ’17, pages 82–93, Piscataway,

NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-3868-2.

[5] Raffi Khatchadourian and Hidehiko Masuhara. Defaulti-

fication refactoring: A tool for automatically converting

java methods to default. In Proceedings of the 32Nd

IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE 2017, pages 984–989, Piscataway,

NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-2684-9.

[6] Nikolaos Tsantalis, Davood Mazinanian, and Shahriar

Rostami. Clone refactoring with lambda expressions.

In Proceedings of the 39th International Conference on

Software Engineering, ICSE ’17, pages 60–70, Piscataway,

NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-3868-2.

[7] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and

Tien N. Nguyen. Mining billions of ast nodes to study

actual and potential usage of java language features.

In Proceedings of the 36th International Conference on

Software Engineering, ICSE 2014, pages 779–790. ACM,

2014.

[8] Lyle Franklin, Alex Gyori, Jan Lahoda, and Danny Dig.

Lambdaficator: from imperative to functional program-

ming through automated refactoring. In Proceedings of the

2013 International Conference on Software Engineering,

pages 1287–1290. IEEE Press, 2013.

[9] Raffi Khatchadourian, Jason Sawin, and Atanas Rountev.

Automated refactoring of legacy java software to enumer-

ated types. In 23rd IEEE International Conference on

Software Maintenance (ICSM 2007), October 2-5, 2007,

Paris, France, pages 224–233. IEEE, 2007.

501


