
Does the Introduction of Lambda Expressions Improve the
Comprehension of Java Programs?

Walter Lucas, Rodrigo Bonifácio, Edna Dias Canedo, Diego Marcílio, and Fernanda Lima

Computer Science Department, University of Brasília (UnB)

Brasília, Brazil

ABSTRACT
Background: The Java programming language version eighth in-

troduced a number of features that encourage the functional style

of programming, including the support for lambda expressions and

the Stream API. Currently, there is a common wisdom that refac-

toring a legacy code to introduce lambda expressions, besides other

potential benefits, simplifies the code and improves program com-

prehension. Aims: The purpose of this paper is to investigate this

belief, conducting an in depth study to evaluate the effect of intro-

ducing lambda expressions on program comprehension.Method:
We conduct this research using a mixed-method study. First, we

quantitatively analyze 66 pairs of real code snippets, where each

pair corresponds to the body of a method before and after the intro-

duction of lambda expressions. We computed two metrics related

to source code complexity (number of lines of code and cyclomatic

complexity) and two metrics that estimate the readability of the

source code. Second, we conduct a survey with practitioners to

collect their perceptions about the benefits on program comprehen-

sion, with the introduction of lambda expressions. The practitioners

evaluate a number between three and six pairs of code snippets,

to answer questions about possible improvements. Results: We

found contradictory results in our research. Based on the quantita-

tive assessment, we could not find evidences that the introduction

of lambda expressions improves software readability—one of the

components of program comprehension. Differently, our findings of

the qualitative assessment suggest that the introduction of lambda

expression improves program comprehension. Implications: We

argue in this paper that one can improve program comprehension

when she applies particular transformations to introduce lambda

expressions (e.g., replacing anonymous inner classes by lambda

expressions). In addition, the opinion of the participants shine the

opportunities in which a transformation for introducing lambda

might be advantageous. This might support the implementation of

effective tools for automatic program transformations. Finally, our

results suggest that state-of-the-art models for estimating program

readability are not helpful to capture the benefits of a program

transformation to introduce lambda expressions.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SBES ’19, September 23–27, 2019, Salvador, Brazil
© 2019 Association for Computing Machinery.

ACM ISBN -. . . $15.00

https://doi.org/-

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; Software evolution; Maintaining software.

KEYWORDS
ProgramComprehension, Java Lambda Expressions, Empirical Stud-

ies

ACM Reference Format:
Walter Lucas, Rodrigo Bonifácio, Edna Dias Canedo, Diego Marcílio, and

Fernanda Lima. 2019. Does the Introduction of Lambda Expressions Improve

the Comprehension of Java Programs?. In SBES ’19: Brazilian Symposium
on software Engineering, September 23–27, 2019, Salvador, Brazil. ACM, New

York, NY, USA, 10 pages. https://doi.org/-

1 INTRODUCTION
Different factors motivate software maintenance efforts, including
business evolution, requirements changes, architectural transition-

ing (towards the use of microservices or cloud environments, for

instance), and the need for quality improvements (such as the use

of more recent APIs or program refactoring) [19]. Low-level tech-

nical aspects might also motivate a software evolution effort. For

instance, the evolution of a programming language, which often in-

troduces new programming language constructs (such as Generics

in Java 5 and Lambda Expressions in Java 8), might trigger mainte-

nance efforts of “legacy systems”. This kind of software rejuvenation
is important to reduce the coexistence of different idioms in soft-

ware programs, mostly because developers often start using new

programming language constructs during the development of new

features, while keeping obsolete constructs in the existing legacy

code.

Without a strategic decision, obsolete constructs are rarely re-

moved from older parts of a program [15]. Although there are exam-

ples of “new” programming language constructs that practitioners

have rapidly understood, embraced, and adopted (e.g., Java Generics

and Java Annotations) [16], the introduction of lambda expressions

in Java does not show the same appeal. For instance, Dantas et al.

report the results of sending rejuvenation patches to open-source

programs with a set of Java program transformations [6]. Curiously,

the introduction of lambda expressions to replace (a) anonymous

inner classes and (b) existing for loops were the types of transforma-

tions with the lowest acceptance rate. Since there are claims that

the use of Java lambda expressions improves program comprehen-

sion [11], these previous results motivate further investigation to

better understand the reasons for that low patch acceptance rates.

Our goal in this paper is to investigate this issue by conducting

a comprehensive assessment about (a) whether or not the use of

lambda expressions improves program comprehension and (b) the

https://doi.org/-
https://doi.org/-

SBES ’19, September 23–27, 2019, Salvador, Brazil W. Lucas et al.

most suitable situations to refactor a code to introduce Lambda

Expressions.

We found conflicting results. Based on a quantitative investiga-

tion using state-of-the-art metrics for program comprehension, our

findings suggest that Java lambda expressions do not improve pro-
gram comprehension. Differently, based on the results of a survey

with practitioners, we identified several scenarios where a refactor-
ing to introduce lambda expressions actually improves program
comprehension. For instance, qualitative findings reveal that replac-

ing anonymous inner classes with small method bodies into lambda

expressions brings benefits for overall code comprehension.

Our study has several implications. First, existing claims that the

adoption of lambda expressions benefits program comprehension

only hold for specific cases—even though the Java support for the

functional style was a long waited feature. Our results provide some

guidance about the scenarios where the introduction of a lambda

expression give benefits on program comprehension. Second, we

give evidence that state-of-the-art metrics for program comprehen-

sion fail to identify whether a given source-code transformation

leads to an improvement on the source code. Although here we

focus on transformations that introduce lambda expressions, these

metrics might also fail in other scenarios as well.

2 BACKGROUND AND RELATEDWORK
Program comprehension is a fundamental attribute that allows soft-

ware maintenance and supports the evolution of a software [25]. Un-

derstanding existing software enables maintainers to successfully

evolve functionality and/or integrate improvements, for every type

of change that is commonly associated with software maintenance

and evolution, including adaptive, perfective, and corrective modi-

fications [25]. The challenges to understand a software are due to

several factors, including that large programs are often maintained

by developers with different skills and using different practices [22].

Moreover, in many cases, the source code is the only reference that

is available and up to date [22], though poor design and lack of

good programming practices hinder program comprehension [23].

The practices developers use for understanding a software vary,

and often depend on a specific motivation (e.g., documenting part

of a system, fixing a bug, implementing a new feature). Nonetheless,

according to Tilley and Paul, “programmers make use of domain

knowledge, programming knowledge, and comprehension strate-

gies when attempting to understand a program” [23]. Therefore,

program comprehension uses existing knowledge to acquire new

knowledge, in order to build a mental model of the software that

might help developers to accomplish a specific task [25]. While

it is true that the skills and experiences of a software developer

are relevant when he / she wants to understand a software, it has

been reported that a set of recommended practices (such as the

use of programming idioms and code formatting tools, design pat-

terns, and refactoring) might also support program comprehension,

in particular when using a bottom-up strategy [17]. Conversely,

the use of some obscure programming constructs, named atoms of

confusion, for instance, increases the rate of source code misunder-

standings [10].

Although many features of a software might impact program

comprehension, in this paper we are particularly interested in as-

pects related to the quality of the source code that might either

facilitate or hinder program understanding [22]. To investigate sim-

ilar issues, several research studies have explored the use of models

for estimating the readability of the source code (e.g., [4, 18, 21]),

which directly affect program comprehension. In addition, previous

research has already investigated the impact on software readabil-

ity with the use of coding practices [7, 10]. Our work builds upon

these previous works, using existing models for estimating software

readability [4, 18], and procedures to qualitatively assess the pref-

erence of practitioners, when considering sets of code snippets [7].

We apply these results of previous research in a different scenario,

related to the introduction of lambda expressions into Java legacy

code.

Lambda expressions were introduced in Java 8 as a means to

support functional programming [24]. They allow functionality to

be treated as a method argument, code, or data [1], enabling what

the literature calls behavior parameterization [14]. Lambda expres-

sions are suitable for parallel constructs and can also substitute

anonymous classes with less code (shorter syntax) [1]. In practice,

Java lambda expressions is a shorter way of expressing instances of

single abstract method interfaces. Another use is to enable the use

of internal iterators within the Java 8 collections API that takes a

lambda expression as an argument [11]. Functional operations like

map and filter can be applied together with streams as an alternative
way to iterate, filter, and extract data from a collection [14]. For in-

stance, consider the code snippets on Listing 1 and Listing 2, based

on an implementation of the 101Companies problem domain [9]. In

this example, the goal is to filter the employees of a department

that have a salary greater than a given value. In the first snippet,

the code uses an implementation without the language features of

Java 8. In the second, the implementation uses a lambda expression

as an argument to the filter method of the Java 8 stream API.

public List<Employee> employeeWithHighSalaries(double salary) {
List<Employee> res = new ArrayList<>();
for(Employee e: employees) {
if(e.getSalary() > salary) res.add(e);

}
return res;

}

Listing 1: Filtering employees with high salaries (approach
previous to Java 8)

public List<Employee> employeeWithHighSalaries(double salary) {
return employees.stream()

.filter(e -> e.getSalary() > salary)

.collect(Collectors.toList());
}

Listing 2: Filtering employees with high salaries (approach
using lambda expressions and the Java 8 stream API)

Previous research on Java lambda expressions has focus on auto-

matic methods for refactoring legacy code to “make the code more

succinct and readable” using lambda expressions [6, 11]—in particu-

lar situations that we can, for instance, replace either an anonymous
inner class or a loop over a collection by statements involving lambda

expressions. Other approaches recommend transformations that in-

troduce lambda expressions to remove duplicated code [24] and to

Does the Introduction of Lambda Expressions Improve the Comprehension of Java Programs? SBES ’19, September 23–27, 2019, Salvador, Brazil

correctly use parallel features of Java 8 [12]. In addition, Mazinanian

et al. present a comprehensive study on the adoption of Java lambda

expressions [14], in order to understand the motivations that lead

Java developers to adopt the functional style of thinking in Java.

The authors contribute with an infrastructure that collects informa-

tion about the adoption of lambda expressions in Java, publishing a

large dataset with more than 100 000 real usage scenarios. We use

this dataset in our research, to understand the benefits on program

comprehension with the adoption of Java lambda expressions.

At first, the use of lambda expressions, due to its conciseness,

yields a more succinct and readable code [6, 11]. However, this

is not always the case, as Dantas et al. [6] produced automated

refactorings for iterating on collections that were not perceived as

more comprehensible. We aim to investigate further which scenar-

ios are benefited from the introduction of lambda expressions. To

the best of our knowledge, previous research did not investigate

the assumption that the use of lambda expressions actually lead to

benefits on program comprehension.

3 STUDY SETTINGS
The general goal of this research is to investigate the benefits on

code comprehension after refactoring Java methods to introduce

lambda expressions, and, thus, answering the research questions

we present in Section 3.1. To this end, we conduct a mixed-method

study. First, we carry out a quantitative assessment of 66 pairs of

code snippets, using state-of-the-art models for measuring soft-

ware comprehension (see Section 3.2). Each pair corresponds to a

method body before and after introducing lambda expressions. The

second investigation is based on a qualitative study (survey) that

we conduct with two distinct populations (a) experience developers

and (b) undergraduate students. During the survey, the participants

answered questions that also aim to compare the code before and

after the use of lambda expressions.

3.1 Research Questions
Considering the general goal of our research, we address several

questions in our study, including

(Q1) Does the use of lambda expressions improve program compre-
hension?

(Q2) Does the introduction of lambda expressions reduce source code
complexity?

(Q3) What are the most suitable situations to refactor a code to intro-
duce lambda expressions in Java?

(Q4) How do practitioners and students evaluate the effect of intro-
ducing a lambda expression into a legacy code?

We conduct this research using an iterative approach, and after

answering a given question, new sub-questions and hypothesis

emerged. For instance, during our research, we also investigate

whether or not the reduction in the size of a code snippet, after

introducing a lambda expression, influences on the perception of

the participants about the quality of a transformation.

3.2 Metrics of the Quantitative Study
We measure the complexity of a code snippet using two metrics:

number of source lines of code (SLOC) and cyclomatic complexity
(CC). Both metrics have been used in a number of studies [2, 13, 20].

In addition, we use two models to estimate and compare the read-

ability of each pair of the code snippets considered in our research.

Readability is one of the aspects used for assessing program com-

prehension, and hereafter both terms are used interchangeably. The

first model we use to estimate program comprehension is based on

the work of Buse and Weimer [4]. It estimates the comprehensi-

bility of a code snippet considering a regression model that takes

as input several features, including several properties of a snippet,

such as the length of each line of code, and the number and length

of identifiers.

The second model was proposed by Posnett et al. [18], which

builds upon the Buse and Weimer model, though considering a

smaller number of source code characteristics. Based on this model,

we can estimate the readability of a code snippet using Eq. (1) and

Eq. (2).

E(X) =
1

1 + e−Z (X)
(1)

Z (X) = 8.87 + 0.40 L(X) − 0.033 V (X) − 1.5 H (X) (2)

That is, in the Posnett et al. model, we calculate program com-

prehension using three main components: the number of lines of a

code snippet (L(X)), the volume of a code snippet (V (X)), and the

entropy (H (X)) of a code snippet. The volume of a code snippet

X is given by V (X) = N (X)loд2n(X), where N (X) is the program

length of the code snippet and n(x) is the program vocabulary.

These measures are defined as

• Program Length (N (X)) is given by N (X) = N1(X) +

N 2(X), where N 1(X) is the number of operators and N 2(X)

is the number of operands of a code snippet.

• ProgramVocabulary (n(X)) is computed using the formula

n(X) = n1(X)+n2(X), where n1(X) is the number of unique

operators and n2(X) is the number of unique operands of a

code snippet.

The entropy of a document X (in our case a code snippet) is

given by Eq (3), where xi is a token in X , count(xi) is the number

of occurrences of xi in the document X , and p(xi) is given by Eq (4).

The entropy (H (X)) in our context estimates the degree of disorder

of the source code.

H (X) = −

n∑
i=1

p(xi) loд2 p(xi) (3)

p(xi) =
count(x)∑n
j=1 count(x j)

(4)

We use an existing tool
1
of Buse and Weimer to estimate the

comprehensibility of the code snippets using their model [4]. We

developed a tool to automate the computation of the Posnett et al.

comprehensibility model [18].
2
We executed these computations

for all pairs of code snippets that we collected using the procedures

detailed in what follows.

1
http://www.arrestedcomputing.com/readability/

2
https://github.com/rbonifacio/program-comprehension-metrics

SBES ’19, September 23–27, 2019, Salvador, Brazil W. Lucas et al.

3.3 Selection of the Code Snippets
We use MinerWebApp

3
to identify code snippets candidates to our

research. This tool monitors the adoption of Java lambda expres-

sions in open-source projects hosted on GitHub, and has been used

in previous research on the adoption of lambda expressions [14].

MinerWebApp connects to the git source code repository of projects,

in order to identify and classify the use of lambda expressions in

Java code. This decision of using MinerWebApp simplified our

process of collecting real usage scenarios of lambda expressions.

MinerWebApp classifies the occurrences of lambda expressions

into three categories:

• New method: When a new method containing lambda ex-

pressions is added to an existing project class;

• New class: When a new class is added to the project, com-

prising methods with lambda expressions;
• Existing method: When a lambda expression is introduced

into an existing method.

From the possibility of collecting the examples directly from an

existing commit, we randomly select MinerWebApp projects in

which there were lambda expressions. Of the selected projects, 59

code snippets were extracted (directly from the GitHub page of

the corresponding commit). The extraction considered the code

snippets of the third category (Existing method) exclusively. We

also collected 29 code snippets of refactoring scenarios to intro-

duce lambda expressions [6]. In total, 88 code snippets from 22

projects were selected, including snippets from projects Elastic

Search, Spring Framework, and Eclipse Foundation. We manually

reviewed these code snippets and removed 22 pairs of code that

does not correspond to a refactoring or that already had lambda

expressions in the code snippet before the transformation, building

a final dataset with 66 pairs of code snippets.

All procedures to collect and characterize the code snippets

from GitHub pages have been automated, using a crawler and addi-

tional scripts for computing source code metrics (Figure 1 shows

an overview of the approach). To foster the reproducibility of our

study, our crawler expects as input a CSV file, where each line

specifies the project, the URL of the commit, the start and end lines

of the code snippet method, and the type of the refactoring (e.g.,

anonymous inner class to lambda expression, for each statements to

a recursive pattern using lambda expressions). After downloading

the pairs of code snippets, we run several scripts to compute the

source code metrics and to estimate the readability models. Lastly,

the code snippets and the results of the metric calculations are

stored in a database—for helping with the procedures to conduct

the surveys and for further statistical analysis.

3.4 Procedures of the Qualitative Study
Regarding the qualitative study, we conduct the research using an

approach based on the work of dos Santos and Gerosa [7]. That is,

we designed an online survey that allows the participants to evalu-

ate pairs of code snippets. We conducted our survey in two phases.

In the first, we only invited professional developers with a large

experience with Java programming, from a convenient population

3
http://refactoring.encs.concordia.ca/lambda-study/

crawler compute metrics store

Figure 1: Overview of our automated approach for collecting
code snippets and calculating metrics

of developers in our professional network. That is, professional de-

velopers correspond to our population of interest. The survey was

organized in two sections, one for characterizing the experience of

the participants and one for evaluating the benefits (or drawbacks)

of introducing lambda expressions into legacy code. This second

section comprises the following (survey) questions.

(SQ1) Do you agree that the adoption of lambda expressions on the
right code snippet improves the readability of the left code
snippet? This is a likert scale question—(1) meaning strongly

disagree and (5) meaning strongly agree-that focus on the

readability aspect.

(SQ2) Which code do you prefer? This is a yes or no question, which
aims to understand if the new code increases general quality

attributes. The same question has been explored in a previous

work [7].

(SQ3) Would you like to include any additional comment to your
answers? This is an open question that allow the participants

to optionally present further details about their answers.

In the second phase, we replicate the survey, though only inviting

undergraduate students. This decision allows us to understand

the perceptions of novices regarding the introduction of lambda

expressions into legacy Java code.

In both phases of the survey, the participants were randomly

assigned to two distinct groups. In each group, the participants

should answer the survey’s questions for a set of a minimum three

and a maximum of six pairs of code snippets—randomly selected

from our population of 66 code snippets. Using this design, we

could evaluate nine pairs of code snippets in the first survey; and

12 pairs of code snippet in the second—without demanding too

much cognitive effort from the participants. To enforce this design,

we dynamically generate a version of the survey for each partici-

pant, depending on the group and phase of the survey. As stated

before, the participants also filled in some personal data (including

gender, academic background, professional experience, and their

experience with functional programming). Table 1 summarizes the

characteristics of the participants of the first phase.

Initially, a pilot with a small number of students, five in total,

was conducted to evaluate whether or not our tool settings were

able to capture the opinion of the developers. After conducting

this first pilot, several adjustments were made in the layout and

in the functionality of the tools. After conducting the surveys, we

cross-validate the results of the qualitative assessment with the

results of the quantitative assessments, by correlating the results

of the estimates for program comprehension from the two models

discussed in the previous section with the results of the surveys.

We also try to explain the results of the survey considering the

Does the Introduction of Lambda Expressions Improve the Comprehension of Java Programs? SBES ’19, September 23–27, 2019, Salvador, Brazil

measurements of SLOC and CC, for all pairs of code snippets in

the survey. Finally, we compare the results of the first and second

phases of the survey using meta-analysis.

4 RESULTS
In this section we present the results of our studies. First we discuss

the results of the quantitative assessment, which considers the

models of Buse and Weimer [4] and Posnett et al. [18] (Section 4.1).

After that, we present the results of the qualitative assessments

and compare the findings of the two studies (Section 4.2). Finally,

in Section 5 we present a general discussion that consolidates our

understanding about the results of our work.

4.1 Quantitative Assessment
We considered the 66 pairs of selected code snippets during the

quantitative assessment. For each pair, we calculated the number of

lines of code (SLOC), the cyclomatic complexity (CC), the estimate
comprehensibility using the Buse and Weimer and the Posnett et al.

models. We address two main hypothesis in order to answer our

research questions.

Hypothesis 1. The introduction of lambda expressions im-

proves program comprehension, according to the state-of-the-

art readability models.

We use a signal test (Wilcoxon Signed-Rank Test [26]) to investigate

this hypothesis, considering the comprehensibility assessments us-

ing the models of Buse and Weimer and Posnett et al. For each

pair of code, the introduction of lambda expressions might have

increased, decreased, or unchanged the comprehensibility, ac-

cording to both models. Table 2 summarizes the results, considering

all pairs of code snippets. The Wilcoxon Signed-Rank Test tests the

null hypothesis that the comprehensibility of the source code before
and after the introduction of lambda expressions are identical [26].

Surprisingly, although the Posnett et al. method builds upon the

model of Buse and Weimer, we found conflicting results. The out-

comes of the test reveals that the introduction of lambda expressions

actually decreases program comprehension (p −value < 0.0001),

when considering the Buse and Weimer model. Nonetheless, when

we consider the Posnett et al. model, we cannot reject the null hy-

pothesis, that is, the introduction of lambda expressions does not

improve the comprehension of the code snippets (p−value = 0.668).

Due to these conflicting results, we compare both models to the

results of the qualitative assessment (Section 4.2).

Hypothesis 2. SLOC and CC can be used to predict the ben-

efits (or drawbacks) on program comprehension, according

to the legibility models considered in this research.

We investigate this hypothesis using a regression model. First,

we calculate the differences in the SLOC (∆s) and CC (∆cc) metrics,

considering the code snippets before and after the introduction

of lambda expressions. We then build two regression models, one

considering as response variable the difference in the Buse and

Weimer model (∆bw) and one considering as response variable the

difference in the Posnett et al. model (∆p).

∆bw = b0 + b1 ∆s + b2 ∆cc (5)

∆p = c0 + c1 ∆s + c2 ∆cc (6)

Table 3 and Table 4 show the results of the regression analysis,

considering the first and second models of Eq. (5) and Eq. (6). Con-

sidering a significance level < 0.05, we cannot predict the benefits

/ drawbacks of introducing lambda expressions, according to the

Buse and Weimer and Posnett et al. models for estimating readabil-

ity, in terms of lines of code and cyclomatic complexity. Therefore,

we can refute our second hypothesis: it is not possible to estimate

the effect on the readability metrics using SLOC and CC.

4.2 Qualitative Assessment
Considering the qualitative assessment, 28 participants (most of

them with large experience in Java programming) evaluate a num-

ber between three and six pairs of code snippets. For each pair of

code snippet, these participants answered the survey questions SQ1,

SQ2, and SQ3. Recall that we split the code snippets into two groups,

and thus each code snippet was evaluated by 14 participants. The

data collection last 16 days, and, on average, each participant spent

2:30 minutes to evaluate each pair of code snippet.

We use two forms of data analysis in this assessments. First, we

summarize the responses to SQ1 and SQ2 using tables and plots, to

build a broad view of the answers for the closed questions. In the

second analysis, we consider the answers to the open question, to

draw qualitative findings. We present some of the tables, plots, and

answers to the closed questions in the remaining of this section.

4.2.1 Improvements on Readability. The goal of the first question
of our survey (Do you agree that the adoption of lambda expres-
sions on the right code snippet improves the readability of the left
code snippet?) is to evaluate if, according to the perception of Java

developers, the introduction of lambda expressions improve the

comprehension of the code snippets. We use a Likert scale to in-

vestigate this. Considering the answers to all pairs of code snippet,

39.7% and 11.1% either agree or strongly agree that the introduction

of lambda expressions improve the readability of the code, respec-

tively; while 24.6% of the responses are neutral, 21.4% disagree,

and 3.2% strongly disagree with the SQ1 statement (see Table 5).

Therefore, we found developers’ leanings towards a readability

improvement after the introduction of lambda expressions.

To better understand this result, we analyzed the answers for

each pair of code snippet (see Figure 2). Transformations 1035, 1052,

an 1180 present more than 60% of positive answers (i.e., introducing

lambda expressions improves the readability of these code snip-

pets). Differently, the pair of code snippet 1182 on Figure 3 received

79% of answers neutral or negative (i.e., the introduction of lambda

expressions seems to reduce the readability of this code snippet).

In this particular case, a for(obj: collection) {...} statement

is replaced by a collection.forEach(obj -> {...}) loop, which

includes a lambda expression. Most of the participants did not agree

that the introduction of a lambda expression improved the read-

ability of the source code in this situation. One of the participants

stated:

SBES ’19, September 23–27, 2019, Salvador, Brazil W. Lucas et al.

Table 1: Characterization of the Survey’s Participants

ID Gender Degree Experience
Lambda

Experience
functional

programming
Experience

1 Male Master Student No 1-4 years 4 years

2 Male BSc degree Yes 1-4 years 2 years

3 Male Master Student Yes More than five years 11 years

4 Male BSc degree Yes 1-4 years 4 years

5 male Master Student Yes 1-4 years 10 years

6 male BSc degree No 5+ years 11 years

7 male Master Student Yes 1-4 years 11 years

8 male Master Student Yes More than five years 11 years

9 male Master Student No No Experience 7 years

10 male BSc degree Yes 1-4 years 5 years

11 male BSc degree Yes 5+ years 5 years

12 male PhD degree Yes No Experience 10 years

13 male BSc degree Yes 1 year 11 years

14 female Master Student No No Experience 5 years

15 male Master Student Yes No Experience 7 years

16 female PhD degree No 4-5 years 5 years

17 male Master Student Yes 1 year 4 years

18 male BSc degree Yes 1-4 years 2 years

19 female Undergraduate Student No 1 year 1 years

20 male BSc degree Yes No Experience 7 years

21 male Master Student Yes More than five years 11 years

22 male Undergraduate Student Yes No Experience 1 year

23 male BSc degree Yes 1 year 1 year

24 male Undergraduate Student Yes No Experience 1 year

25 male Undergraduate Student Yes 1 year 4 years

26 male Master Student Yes 4-5 years 5 years

27 male BSc degree No No Experience 1 year

28 male BSc degree Yes No Experience 11 years

Table 2: Number of pairs of code snippets that have
improved the legibility, decreased the legibility, and un-
changed the legibility; after the introduction of lambda ex-
pressions.

Model Increased Decreased Unchanged

Buse and Weimer 13 44 9

Posnett et al. 31 35 0

Table 3: Summary o the regressionmodel to estimate the dif-
ference on the Buse and Weimer estimates, using SLOC and
CC

Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.0309 0.0128 2.41 0.0190

∆s 0.0052 0.0029 1.77 0.0816

∆cc 0.0003 0.0199 0.01 0.9888

Table 4: Summary o the regressionmodel to estimate the dif-
ference on the Posnett et al. estimates, using SLOC and CC

Estimate Std. Error t value Pr(> |t|)

(Intercept) -0.0184 0.0161 -1.14 0.2567

∆s -0.0088 0.0037 -2.41 0.0190

∆cc 0.0099 0.0249 0.40 0.6937

“(considering the code snippet 1182) I think that replacing a
normal for each by an collection.forEach() would only bring
benefits when there are additional calls either to the map or
filter methods, or perhaps calls to some other method list
processing.”

Figure 4 shows the pair of code snippet 1180. In this example, an

instance attribute (duplicate) is first initialized using an anony-

mous inner class (Figure 4-(a)). This anonymous inner class was

later replaced by a lambda expression (Figure 4-(b)), and 64% of the

participants either agree or strongly agree that this transformation

Does the Introduction of Lambda Expressions Improve the Comprehension of Java Programs? SBES ’19, September 23–27, 2019, Salvador, Brazil

Figure 2: Answers to the first question of the survey, consid-
ering the pairs of code snippets

29%

14%

14%

7%

29%

21%

43%

36%

29%

57%

64%

71%

57%

36%

64%

21%

43%

43%

14%

21%

14%

36%

36%

14%

36%

21%

29%

100 50 0 50 100

1027

1035

1052

1062

1166

1180

1182

1183

1192

Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Table 5: Summary of the answers for the question Do you
agree that the adoption of lambda expressions on the right
code snippet improves the readability of the left code snippet?

SQ1 Answers Percentage Cum. Percentage

Strongly disagree 4 3.2% 3.2%

Disagree 27 21.4% 24.6%

Neutral 31 24.6% 49.2%

Agree 50 39.7% 88.9%

Strongly Agree 14 11.1% 100.0%

Total 126 100.0%

improves the readability of the code snippet. Regarding this pair of

code snippet, one of the participants state that:

“Here the transformation makes sense, because it eliminates the
use of anonymous inner class with a trivial method body (often
used to implement the Command design pattern in Java)”

Considering all pairs of code snippets we use in the survey,

only in two pairs of code snippets (1166 and 1182) we observe a

Figure 3: Pair of code snippet 1182
assertEquals(numRequests, responses.size());
for(TestResponse t: responses) {
Response r = t.getResponse();
assertEquals(t.method, r.getRequestLine().getMethod());
...

}

(a)

assertEquals(numRequests,responses.size());
responses.forEach(t -> {
Response r = t.getResponse();
assertEquals(t.method, r.getRequestLine().getMethod());
...

});

(b)

Figure 4: Pair of code snippet 1180
private Function duplicate = new Function() {
publicString apply(String in) {
returnin + in;

}
};

(a)

private Function duplicate = (String in) -> { return in + in; };

(b)

tendency towards either a neutral or a divergent opinion that the

introduction of lambda expressions improves the readability of the

code. More specifically, in these two cases, the percentage of agree

and strongly agree was under 50%. Interesting, both are examples

of transformations that replace a regular for each statement by a

collection.forEach(...) using a lambda expression.

4.2.2 Source Code Preference. The goal of the second question

of our survey (Which code do you prefer?) is to understand if the

practitioners have a preference for the code before or after the

introduction of lambda expression. Considering the nine pairs of

code snippets of the survey (that we randomly select from the

initial population), only the pair of code snippet 1166 received more

choices for the first version of the code (i.e., before the introduction

of lambda expressions). Therefore, we found some evidence in this

survey that the participants identify the introduction of lambda

expressions as a transformation that improves the quality of the

source code. Surely, this preference depends on the experience of

the developers, as one of the participants state:

“It depends on the practical knowledge on functional program-
ming, since programmers of the 1980s and 1990s are likely to
consider easier to understand code where loops, control variables,
and pointers are explicit.”

We used the Spearman correlation test to verify whether the

reduction on lines of code and the reduction on cyclomatic complex-

ity could explain the preference of the participants for the pieces

of code after the introduction of lambda expressions. We found a

moderate to high correlation (0.67) between the reduction on the

SBES ’19, September 23–27, 2019, Salvador, Brazil W. Lucas et al.

lines of code and the number of votes in favor of the code after

the introduction of lambda expressions. Therefore, in the cases

that a source code transformation to introduce lambda expressions

reduce the number of lines of code, it might improve the general

quality of the code—according to the perceptions of the participants.

Differently, we found a weak correlation between the reduction on

cyclomatic complex and the number of choice in favor (or against)

of the code snippets using lambda expressions. This might be ex-

plained because the introduction of lambda expressions did not

reduce the cyclomatic complexity in several cases.

4.2.3 Replication of the Qualitative Assessment. We replicate the

qualitative assessment with Computer Science and Computer En-

gineering undergraduate students from our university, in order to

understand the impact of introducing lambda expressions on code

comprehension (that is, we focus only in the survey question SQ1).

We follow the same procedures of the first survey. In particular,

we randomly organized 12 pairs of code snippets in two different

groups, and each student evaluated six pairs of code snippets. A

total of fifteen students contributed with complete answers to the

survey.

Figure 5 summarizes the results of the survey, considering all

pairs of code snippets. In this study, 28.9% and 36.7% of the stu-

dent agree or strongly agree, respectively, that the introduction

of lambda expression in the code snippets improve readability.

Only 7.8% of the answers disagree with the SQ1 statement, while

2.2% strongly disagree and 24% are neutral. We conducted a meta-

analysis to understand how the perceptions of practitioners differ

from the perceptions of the students. Meta-analysis is a quantitative

procedure used to increase the confidence, combining the results

of different empirical studies [5].

Figure 5: Summary of the students’ answers to the first ques-
tion of the survey

10% 66%24%

100 50 0 50 100

Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

We conducted a meta-analysis to combine the results we col-

lected from the answers of the surveys (with practitioners and

students), considering only the first survey research question (SQ1).

To this end, we computed the effect size and evaluated the summary

effect and heterogeneity [3]. Since here we only combine the results

of two studies, we use the model of fixed effects. Figure 6 shows

the results using a forest plot—the most used method to present the

results of a meta-analysis [3, 5]. A forest plot summarizes all effect

data and the contribution of each study [3]. The first two rows

of the plot represent the effect of the results of the two surveys

(for the first survey question). The third and fourth rows of the

plot highlight the comparison of the results, considering the fixed

and random effect models. The first columns of the plot contains

information about the studies (a brief description). It is possible to

see the heterogeneity of the studies by interpreting the odds ratio
information. The last columns of the plot show the confidence inter-

val (considering 95% as reference) and the weights for the fixed and

random models. Finally, the diamond on the last line of the forest

plot reveals the overall size of the summary effect. The center of the

diamond represents the size of the effect and its width represents

the limits, considering a confidence interval of 95%.

According to the results, the effect size is significant. The values

of p = 0.65 and I2 = 0% indicates that the studies do not have

heterogeneity. Since the meta-analysis measurement is on the right

of the vertical line positioned in 1, there is a significant statisti-

cal effect. Both studies show an effect that argues in favor of the

introduction of lambda expressions, in order to improve the read-

ability of the source code. Most important, the lack of heterogeneity

suggests that this result characterizes not only the perceptions of

professionals with large experience in Java, but also the percep-

tions of undergraduate students with small exposure to functional

programming.

5 DISCUSSION
As explained in the previous section, we found conflicting results

in our research. First, the models for estimating readability diverge

from one another. According to The Buse and Weimer [4] model,

when we introduce a lambda expression into a Java legacy method,

the readability of the method decreases. We found this using the

non-parametric Wilcoxon Signed-Rank Test [26]. Differently, us-

ing the same test, the model of Posnett et al. [18] suggests that

the introduction of lambda expressions does not impact program

comprehension.

However, the results of the qualitative assessments, considering

both developers with large experience in Java programming and

undergraduate students, suggest that the introduction of lambda

expressions improves program comprehension. We believe that

these conflicting results are due to the limitations of both models

on identifying improvements on code readability caused by finer-

grained transformations. As a future work, we want to explore this

issue using a catalog of well-known refactorings.

Considering the results of both quantitative and qualitative stud-

ies, we answer our research questions in Section 5.1 and present

some lessons learned in Section 5.2. Finally, we present some threats

to the validity of our study in Section 5.3.

5.1 Answers to The Research Questions
When using a mixed-method study, the best scenario occurs in

situations where the results of each study supports and explains

the results of one another. This is not the case here, and we are

in favor of the results of the qualitative study, in particular due

to some limitations of the existing models for estimating program

comprehension. Therefore, considering our first research question

(Does the use of lambda expressions improve program comprehen-

sion?), our findings reveal that refactoring legacy code introducing

lambda expression improves program comprehension.

Regarding the second research question (Does the introduction
of lambda expressions reduce source code complexity?), we found

Does the Introduction of Lambda Expressions Improve the Comprehension of Java Programs? SBES ’19, September 23–27, 2019, Salvador, Brazil

Figure 6: Forest plot with the results of the meta-analysis

Study

Fixed effect model
Random effects model
Heterogeneity: I 2 = 0%, τ2 = 0, p = 0.71

Est Empirical 1
Est Empirical 2

Events

 7
10

Total

21

 9
12

Experimental
Events

 2
 2

Total

21

 9
12

Control

0.1 0.5 1 2 10

Odds Ratio OR

10.57
10.57

8.16
12.88

95%-CI

[3.25; 34.42]
[3.25; 34.42]

[1.35; 49.14]
[2.69; 61.69]

(fixed)

100.0%
--

43.2%
56.8%

Weight
(random)

--
100.0%

43.2%
56.8%

Weight

that considering all 66 pairs of code snippets, there is no evidence

that introducing lambda expressions reduces the complexity of the

code, considering SLOC and cyclomatic complexity. Considering

our third research question (What are the most suitable situations
to refactor code to introduce lambda expressions?), we found that

replacing an anonymous inner class with simple method body is

the most suitable situation to introduce lambda expression into

legacy code. Composing different recursive patterns (e.g., filter,

map, and collect) introduces another promising scenario for this

type of refactoring. Differently, just replacing a simple for over a
collection statement by a collections.forEach() does not bring

any benefits, according to the participants of the survey.

Finally, regarding our fourth research question (How do prac-
titioners and students evaluate the effect of introducing a lambda
expression into a legacy code?), our findings reveal a positive leaning
towards the adoption of lambda expressions, not only considering

program readability (which we explore using SQ1), but also the

preference of the code using lambda expressions (as we explore

using SQ2).

5.2 Lessons Learned
Need for reviewing comprehensibility models. The state-of-

the-art models for estimating code readability could not capture

the benefits of introducing lambda expressions, as the participants

of our survey report. We believe that a further investigation is nec-

essary, in order to understand if these models fail to capture the

benefits of fine-grained transformations similar to the introduction

of lambda expression, or if they fail to general transformations such

as popular refactorings. Nonetheless, both models are sensitive for

code formatting decisions, including the number of blanking char-

acters. Similar conclusions have been reported in a recent research

work [8].

Recommendations for Refactoring Tools. We found that

transforming anonymous inner classes with simple method bod-
ies into lambda expressions is the scenario that brings more benefits

for code comprehension. In this way, refactoring tools should not

naively try to apply this transformation in the case that the method

has several lines of code. Other scenarios of transforming legacy

code into lambda expressions occur when it is possible to compose

different recursive patterns, such as filter andmap. Refactoring tools

should also focus on these scenarios. Nonetheless, we consider that

it is not recommended to apply automatic transformations of sim-

ple for statements over a collection into a collections.forEach()

statement.

Use of Students on Program Comprehension Studies. The
comparison of the surveys’ results allowed us to conclude that it is

worth to consider the opinion of students in program comprehen-

sion research, and the findings do not differ significantly when we

compare their opinion with the opinion of professionals with large

experience on software development. In this way we believe that

we can generalize our results to both populations.

5.3 Threats to Validity
There are two main threats to our work. First, our results depend on

the representativeness of the code snippets used in the investigation.

Althoughwe use a sample from real scenarios that introduce lambda

expressions in legacy code, this sample might not correspond to

representative population that would be recommended to draw

conclusions from our quantitative assessment. Based on this first

selection, and to try to avoid human bias, we also made a second

random selection of code snippets to collect the opinion of the

participants of the qualitative assessment. In the end, we evaluated

nine pairs of code snippets in the first survey. During the replication

study, in the second survey we considered the same pairs of the first

survey, with three additional pairs of code snippets. This number

is similar to the number of code snippets evaluated in a previous

study [7].

The second threat is related to external validity. The surveys’

participants belong to a relatively narrow group of professional

developers with large Java experience and undergraduate students.

Although they belong to a group of great interest to the software

community, it was not possible to get a sample of participants

large enough to generalize our findings. Nonetheless, since we

combined the results of two surveys, we believe thatwe have a broad

understanding about the benefits of introducing lambda expressions

into Java legacy code. Finally, we could also have used other models

to estimate readability, which have been previously discussed in

the literature [21]. However, we only found an implementation of

one of these models [4]. We still implemented the computation

SBES ’19, September 23–27, 2019, Salvador, Brazil W. Lucas et al.

for an additional model [18], but it would be difficult to provide

implementations for all models available in the literature.

6 FINAL REMARKS
In this paper we presented the results of a mixed-method investi-

gation (i.e., using quantitative and qualitative methods) about the

impact on code comprehension with the adoption of lambda expres-

sions in legacy Java systems. We used two state-of-the-art models

for estimating code comprehension [4, 18], and found conflicting

results. Although the model of Posnett et al. [18] reveals that the

introduction of lambda expressions did not change the readability

of the code, the model of Buse and Weimer [4] suggests that the

introduction of lambda expressions actually decreases the compre-

hensibility of the source code. We also conducted two surveys with

professional software developers and students, and the results of

the surveys indicate that the introduction of lambda expressions

in legacy code improves code comprehension. After considering

these conflicting results, we argue that (a) this kind of source code

transformation improves software readability for specific scenarios

(e.g, replacing an anonymous inner class by a simple method body

by a lambda expression) and (b) we need more advanced models to

understand the benefits on program comprehension after applying

finer-grained program transformations.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-

able comments, which helped us to improve the quality of this

paper. This work was partially supported by FAP-DF, research

grant 05/2018.

REFERENCES
[1] Anwar Alqaimi, Patanamon Thongtanunam, and Christoph Treude. 2019. Auto-

matically Generating Documentation for Lambda Expressions in Java. In Proceed-
ings of the 16th International Conference on Mining Software Repositories (MSR
’19). IEEE Press, Piscataway, NJ, USA, 310–320. https://doi.org/10.1109/MSR.2019.

00057

[2] Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser. 2012. Standard-

ized code quality benchmarking for improving software maintainability. Software
Quality Journal 20, 2 (01 Jun 2012), 287–307.

[3] M. Borenstein, L.V. Hedges, J.P.T. Higgins, and H.R. Rothstein. 2011. Introduction
to Meta-Analysis. Wiley. https://books.google.de/books?id=JQg9jdrq26wC

[4] Raymond P. L. Buse and Westley Weimer. 2010. Automatically documenting

program changes. In ASE 2010, 25th IEEE/ACM International Conference on Auto-
mated Software Engineering, Antwerp, Belgium, September 20-24, 2010, Charles
Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 33–42.

[5] H. Cooper, L.V. Hedges, and J.C. Valentine. 2009. The Handbook of Research
Synthesis and Meta-Analysis. Russell Sage Foundation. https://books.google.de/

books?id=LUGd6B9eyc4C

[6] Reno Dantas, Antonio Carvalho, Diego Marcilio, Luisa Fantin, Uriel Silva, Walter

Lucas, and Rodrigo Bonifácio. 2018. Reconciling the past and the present: An

empirical study on the application of source code transformations to automat-

ically rejuvenate Java programs. In 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March
20-23, 2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.).

IEEE Computer Society, 497–501.

[7] Rodrigo Magalhães dos Santos and Marco Aurélio Gerosa. 2018. Impacts of

coding practices on readability. In Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, Foutse Khomh,

Chanchal K. Roy, and Janet Siegmund (Eds.). ACM, 277–285.

[8] Sarah Fakhoury, Devjeet Roy, Sk. Adnan Hassan, and Venera Arnaoudova. 2019.

Improving Source Code Readability: Theory and Practice. In Proceedings of the
27th International Conference on Program Comprehension (ICPC ’19). IEEE Press,

Piscataway, NJ, USA, 2–12. https://doi.org/10.1109/ICPC.2019.00014

[9] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. 2012.

101companies: A Community Project on Software Technologies and Software

Languages. In Objects, Models, Components, Patterns, Carlo A. Furia and Sebastian
Nanz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 58–74.

[10] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin

K.-C. Yeh, and Justin Cappos. 2017. Understanding Misunderstandings in Source

Code. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 129–139. https://doi.

org/10.1145/3106237.3106264

[11] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. 2013. Crossing the Gap

from Imperative to Functional Programming Through Refactoring. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2013). ACM, New York, NY, USA, 543–553. https://doi.org/10.1145/2491411.

2491461

[12] Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed Ahmed. 2019.

Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams. In

Proceedings of the 41st International Conference on Software Engineering (ICSE ’19).
IEEE Press, Piscataway, NJ, USA, 619–630. https://doi.org/10.1109/ICSE.2019.

00072

[13] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J. Vinju. 2016.

Empirical analysis of the relationship between CC and SLOC in a large corpus of

Java methods and C functions. Journal of Software: Evolution and Process 28, 7
(2016), 589–618.

[14] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.

Understanding the Use of Lambda Expressions in Java. Proc. ACM Program. Lang.
1, OOPSLA, Article 85 (Oct. 2017), 31 pages. https://doi.org/10.1145/3133909

[15] Jeffrey L. Overbey and Ralph E. Johnson. 2009. Regrowing a Language: Refac-

toring Tools Allow Programming Languages to Evolve. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA ’09). ACM, New York, NY, USA, 493–502.

https://doi.org/10.1145/1640089.1640127

[16] Chris Parnin, Christian Bird, and Emerson R. Murphy-Hill. 2011. Java generics

adoption: how new features are introduced, championed, or ignored. In Proceed-
ings of the 8th International Working Conference on Mining Software Repositories,
MSR 2011 (Co-located with ICSE), Waikiki, Honolulu, HI, USA, May 21-28, 2011,
Proceedings, Arie van Deursen, Tao Xie, and Thomas Zimmermann (Eds.). ACM,

3–12. https://doi.org/10.1145/1985441.1985446

[17] Nancy Pennington. 1987. Stimulus structures and mental representations in

expert comprehension of computer programs. Cognitive Psychology 19, 3 (1987),

295 – 341. https://doi.org/10.1016/0010-0285(87)90007-7

[18] Daryl Posnett, Abram Hindle, and Premkumar T. Devanbu. 2011. A simpler

model of software readability. In Proceedings of the 8th International Working
Conference on Mining Software Repositories, MSR 2011 (Co-located with ICSE),
Waikiki, Honolulu, HI, USA, May 21-28, 2011, Proceedings, Arie van Deursen, Tao

Xie, and Thomas Zimmermann (Eds.). ACM, 73–82.

[19] Václav Rajlich. 2014. Software Evolution and Maintenance. In Proceedings of
the on Future of Software Engineering (FOSE 2014). ACM, New York, NY, USA,

133–144. https://doi.org/10.1145/2593882.2593893

[20] M. Riaz, E. Mendes, and E. Tempero. 2009. A systematic review of software

maintainability prediction and metrics. In 2009 3rd International Symposium on
Empirical Software Engineering and Measurement. 367–377. https://doi.org/10.

1109/ESEM.2009.5314233

[21] S. Scalabrino,M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. 2016. Improving

code readability models with textual features. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1–10. https://doi.org/10.1109/

ICPC.2016.7503707

[22] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. 2000. How do

program understanding tools affect how programmers understand programs?

Sci. Comput. Program. 36, 2-3 (2000), 183–207.
[23] S. R. Tilley, S. Paul, and D. B. Smith. 1996. Towards a framework for program

understanding. In WPC ’96. 4th Workshop on Program Comprehension. 19–28.
https://doi.org/10.1109/WPC.1996.501117

[24] N. Tsantalis, D. Mazinanian, and S. Rostami. 2017. Clone Refactoring with

Lambda Expressions. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 60–70. https://doi.org/10.1109/ICSE.2017.14

[25] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program Comprehension

During Software Maintenance and Evolution. IEEE Computer 28, 8 (1995), 44–55.
[26] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics

Bulletin (JSTOR) 1, 6 (1945), 80–83.

http://www.fap.df.gov.br/
https://doi.org/10.1109/MSR.2019.00057
https://doi.org/10.1109/MSR.2019.00057
https://books.google.de/books?id=JQg9jdrq26wC
https://books.google.de/books?id=LUGd6B9eyc4C
https://books.google.de/books?id=LUGd6B9eyc4C
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/2491411.2491461
https://doi.org/10.1145/2491411.2491461
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1145/3133909
https://doi.org/10.1145/1640089.1640127
https://doi.org/10.1145/1985441.1985446
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1145/2593882.2593893
https://doi.org/10.1109/ESEM.2009.5314233
https://doi.org/10.1109/ESEM.2009.5314233
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/WPC.1996.501117
https://doi.org/10.1109/ICSE.2017.14

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Study Settings
	3.1 Research Questions
	3.2 Metrics of the Quantitative Study
	3.3 Selection of the Code Snippets
	3.4 Procedures of the Qualitative Study

	4 Results
	4.1 Quantitative Assessment
	4.2 Qualitative Assessment

	5 Discussion
	5.1 Answers to The Research Questions
	5.2 Lessons Learned
	5.3 Threats to Validity

	6 Final Remarks
	Acknowledgments
	References

